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1 Introduction

This paper focuses on how the rules for absurdity are evaluated in the framework
of proof-theoretic semantics. While this topic has been investigated thoroughly
– both in classical and in recent works, which are mentioned in the following
sections –, some key issues has been neglected. In particular, in dealing with ab-
surdity researchers have focused almost exclusively on the satisfaction of a well-
known prerequisite for proof-theoretic validity, usually called Inversion Principle,
without taking in consideration the full account of validity. The main goal of this
work is to fix this lack.

Apart from this introduction, the article is divided in two sections:

• In the first one, the Inversion Principle is presented and compared with a
full notion of proof-theoretic validity. The need of an explicit definition
for such a notion is defended, and the definition of validity of inferences
(needed to evaluate ex falso quodlibet) is obtained from that of validity of
derivations.

• In the second section, the role of ex falso quodlibet inside proof-theoretic
semantics is evaluated. First of all, Inversion Principle is taken in consider-
ation, and some proposed solutions to make this rule suits it are presented.
Then these same solutions are discussed for proof-theoretic validity tout
court. In the end, it is concluded that a full notion of proof-theoretic valid-
ity poses new and hard-to-solve problems for ex falso quodlibet.

A conclusion completes the paper, by taking stock of problems and solutions in-
vestigated and evaluating the status of the rules for absurdity in proof-theoretic
semantics.
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2. PROOF-THEORETIC VALIDITY

2 Proof-theoretic validity

2.1 Inversion principle and justification of rules

According to a common vulgata proof-theoretic semantics (PTS) distinguishes
between meaning-conferring rules - which are self-justified - and rules which are
justified by the meaning of the terms which occur in them. The reason to impose
this distinction is that there are pairs of rules which behave so badly that they are
apparently unable to give a clear meaning to the connectives which they speak
about, and so should arguably be excluded from any good system. A standard
example of this situation is Prior’s rules for tonk, which allow to derive AtonkB
from A and to derive B from AtonkB. According to the received wisdom, the
problem with these rules is that the meaning-conferring rule does not justify the
other one.1

It is standard to consider I-rules as meaning conferring rules – essentially be-
cause they increase the complexity of their conclusion – and E-rules as justified.2

Already (Gentzen, 1969b) had a similar position, and later Prawitz developed this
idea in a series of works, starting from (Prawitz, 1965). Nonetheless, taking as
an example Gentzen’s system NJ of intuitionistic logic, it is immediately obvious
that E-rules are not derivable from I-rules stricto sensu, since there are derivations
that cannot be formulated without them. Moreover, even restricting our attention
to closed derivations, E-rules seem to remain indispensable, so they are neither
derivable, nor admissible.3 In order to explain in which way E-rules can be jus-
tified by their introduction counterpart, Prawitz proposes his Inversion Principle
(IP):4

“Let α be an application of an elimination rule that has B as conse-
quence. Then, deductions that satisfy the sufficient condition [· · · ]
for deriving the major premiss of α , when combined with deductions
of the minor premisses of α (if any), already “contain” a deduction
of B; the deduction of B is thus obtainable directly from the given
deductions without the addition of α .”

1 In other words, to distinguish between meaning-conferring and justified rules means to adopt
a normative approach toward meaning theory, instead of a purely descriptive one, like the one
endorsed in (Popper, 1947a), (Popper, 1947b), (Popper, 1948a), (Popper, 1948b), against which
Prior’s objection was originally raised.

2 It is nonetheless possible to consider E-rules as meaning conferring. This alternative is already
evaluated in (Prawitz, 1971), and used in (Dummett, 1991) in order to define what he calls stability.

3 (Moriconi, 2012), p. 70.
4 (Prawitz, 1965), p. 33. For a historical account of the development of this principle, see

(Moriconi and Tesconi, 2008).
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2. PROOF-THEORETIC VALIDITY

In practice, a pair of rules for a logical constant suits IP iff there are some
reduction steps which: take every derivation in which the major premise of an E-
rule is derived using an I-rule as input; return a derivation of the conclusion of the
E-rule which is constructed by combining the derivations of the premises of the
I-rule and the (eventual) derivations of the minor premises of the E-rule. To make
this intuition more precise, Prawitz introduces the notion of maximal formula:

Definition 1 (Maximal formulae) Given a derivation D, a maximal formula in it
is a formula that is the conclusion of an I-rule and the major premise of an E-rule.

IP holds for a pair of I and E-rules iff there is a reduction step that removes
the maximal formula that they generate. As an example, the maximal formula in
the derivation in the left is remouved in that on the right:

...
A

[A]
...
B⊃I

A⊃ B⊃E
B
...

 

...
A
...
B
...

2.2 Validity

While this naïf formulation of PTS focuses on just the local property of the avail-
ability of a reduction step for a maximal formula, usually calling it harmony,
in the more detailed picture this property is only a prerequisite of another prop-
erty, called normalizability, which in turn is a prerequisite of what really is proof-
theoretic validity.

Why IP is not enough

Someone could wonder why, even though IP already establishes that the E-rules
are contained in the I-rules, we should go further in our analysis. Indeed, given
the traditional characterization of analyticity, it seems that we have established
that E-rules are analytic consequences of I-rules, since they are already contained
in them. In order to show why this picture does not catch analyticity appropriately,
let us consider the following pair of rules which, according to Stephen Read are a
proof-theoretic version of the liar:5

5 (Read, 2000), p. 141. They are essentially a reformulation of a pair of rules already evaluated
in (Prawitz, 1965), p. 33.

4
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2. PROOF-THEORETIC VALIDITY

¬••I •
•

[¬•]
...
C•E

C

These rules suit IP, so there is a reduction step for every maximal formula that
they can generate. Nonetheless, they have two flaws: they generate derivations
in which it is not possible to erase all the maximal formulae, even though it is
possible to erase each of them; they can be used to give a closed proof of ⊥
(passing through maximal formulae).

The mechanism behind this phenomenon is that even though each single max-
imal formula can be erased, other maximal formulae are generated in the process.
This is not strange; it is what usually happens when we operate a reduction step.
What is peculiar about this situation is that the process of removing maximal for-
mulae moves in a circle, never accomplishing its task. Arguably, since this pair
of rules leads to contradiction – a contradiction which should even be analytically
valid –, we want our criterion to exclude them, and IP is useless for this purpose.6

According to Prawitz, this means that we should elaborate further on the idea
of IP and ask for normalizability of each derivation. He defines as in normal
form a derivation in which there are no maximal formulae, and normalizable a
derivation which can be reduced to normal form by a reduction procedure – that
is, the reflexive and transitive closure of reduction steps.7

Validity

Exploiting normalization, we can in the end formulate proof-theoretic validity
explicitly. Let us start by defining canonical derivations:

Definition 2 (Canonical derivation) A canonical derivation for a non-atomic
sentence is a closed derivation that ends with an application of an introduction
rule and such that it has only valid immediate subderivations.

6 Although the idea of contradictory analytical rules could seem absurd, (Read, 2015) defends
this possibility.

7 Here we are taking the reduction steps as fixed in advance. It is sometimes asserted that this
is one of the main differences between Prawitz’s approach via natural deduction and Martin-Lof̈
approach via Intuitionistic Type Theory, in which on the contrary reduction steps are rules of the
system, and so part of the explicit meaning of the logical constants (see (Moriconi, 2012), p. 71.).
While this is surely true to some extent, especially if referred to Prawitz’s early writing (Prawitz,
1971), it is important to remember that Prawitz himself, starting from (Prawitz, 1973), considers
reduction steps as “customizable” so to say, even though maybe not part of the meaning of the
logical terms.

5
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2. PROOF-THEORETIC VALIDITY

This is the central notion of the recursive definition of validity.8 Another nec-
essary ingredient for defining validity are atomic bases, which will be very im-
portant for our investigation regarding absurdity:

Definition 3 (Atomic Base) An atomic base B is a set of rules (called ‘atomic
rules’) that apply to atomic sentences and have atomic sentences as conclusions.

An atomic rule can discharge an assumption, and there is no request of con-
sistency for atomic bases, that is an atomic base B can allow a closed derivation
of⊥. We obtain our goal through a definition of validity with respect to an atomic
base, and a subsequent generalization that gives validity tout court. This detour is
necessary because we need atomic bases in order to close open derivations:

Definition 4 (Validity in B) A derivation D is valid in B iff either:

1. D is a closed derivation of an atomic conclusion C and it can be reduced
by normalization to a closed proof of the same conclusion C carried on in
B; or

2. D is a closed derivation of a non-atomic conclusion C and it can be reduced
by normalization to a canonical proof of the same conclusion C; or9

3. D is an open derivation and for every extension B′ of B every closure of D
(obtained by replacing each open assumption of D by a closed derivation
of it that is valid in B′) is valid in B′.

Let us just note that, given the third clause of this definition, an open derivation
can be valid in B because: it has only valid closures in every extension B′ of B;
or it does not have closures at all in any extension of B.

Definition 5 (Validity) A derivation is valid iff it is valid with respect to each
atomic base B.

So we have arrived in the end at the proof-theoretic definition of validity. Un-
fortunately, this definition works only in bundle with a controversial assumption:10

Assumption 2.1 (Fundamental assumption). For every valid closed derivation of
B non-atomic, there is a canonical derivation with the same conclusion that can
be found by reduction.

8 The term canonical proof is coined in (Dummett, 1978), but the idea that valid closed deriva-
tions that end with an application of an I-rule have a key role in the definition of validity is already
established in (Prawitz, 1971).

9 In this case a canonical derivation asks for subderivations valid in B.
10 (Dummett, 1991), p. 254.

6
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2. PROOF-THEORETIC VALIDITY

This assumption is a theorem for valid closed derivations in NJ, that is for
closed derivations in which no atomic rule is applied, since it is a trivial corollary
of normalizability that in this case a closed derivation in normal form always ends
with an I-rule.11 Nonetheless, we need to assume this property also for closed
derivations that use atomic rules, because these are needed to close open deriva-
tions.12 This assumption is the reason why we can accept the second clause of the
definition of validity in B. Without this, there is no warrant that for every closed
derivation there is a canonical one.

From validity of derivations to validity of inferences

With the previous notions in place, we can define valid inferences as valid (usually
open) derivations. Someone could feel that we are inverting the natural order of
explanation. Indeed, in PTS valid derivations are defined before valid inferences
and the concept of derivation is even used in the definition of valid inference.13

There are some ways to turn around this order of explanation, but it is not as easy
as it could seem. As an example, Prawitz’s attempt through grounds succeeds, but
only because this notion is, again, defined in a global way.14

We already saw some difficulties which we encounter if we try to define va-
lidity in a purely local way, by using IP or some similar principles which apply
directly to rules. Nonetheless, someone could be unconvinced by our counterex-
ample which relies on Read’s bullet, so let us see some possible objections and
their respective answers.

Acceptability of the I-rule for bullet Read’s bullet works as a counterexample to
IP iff •I is an acceptable I-rule, and •I and •E suit IP.15 There are objections to
both these clauses.

Both Milne and Gabbay raise doubts about whether •-rules really satisfy IP.
While their arguments are different, they are based on a common observation: •-
rules taken in isolation seem to suit IP, but ¬ and ⊥ occur in the rules for • and if

11 This is the reason why Schroeder-Heister speaks of it as a corollary of normalization in
(Schroeder-Heister, 2006) (p. 531), receiving some severe criticisms from Stephen Read: (Read,
2015), p. 146, note 17.

12 Since in pure NJ, that is without atomic rules, we have closed derivations only for logical
theorems.

13 Prawitz (2019) pp. 494, 496.
14 (Prawitz, 2019).
15 Here we do not discuss the controversial position of Read, who accepts incoherent analytically

valid sets of rules.

7
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2. PROOF-THEORETIC VALIDITY

we take in consideration ¬-rules and ⊥-rules as well, IP does not hold anymore.16

Furthermore, •I seems already problematic qua introduction rule because,
while I• should define the meaning of •, this constant already occurs in the as-
sumption of the rule, leading to a circular definition. According to Dummett’s
complexity condition, an I-rule could be ‘circular’ in the way just seen, as long
as in any of its application its conclusion is more complex than its premises and
discharged assumptions.17 Anyway, it is clear that •I cannot suit this condition,
since • occurs negated in the premise but not in the conclusion, so its acceptability
is still at least in doubt. Dyckhoff claims that Dummett’s condition is too strong,
since it excludes some well-behaving rules for natural numbers, but in the end he
proposes a change that saves these arithmetical rules but still excludes •I.18 So, the
argument goes, since there are good reasons to reject • as a counterexample to IP,
maybe we could regain hope in a local characterization of validity. Unfortunately,
there is another counterexample, which solves all these objections. The pair of
rules:

(a+ c)/(b+d) = e/ f
?I

(a/b)?(c/d) = e/ f
(a/b)?(c/d) = e/ f

?E
(a+ c)/(b+d) = e/ f

lead to contradiction in any minimal system for arithmetic, and suits both IP and
Dyckhoff’s reformulation of complexity principle.19

Other local principles in general? Someone could object that our argument only
applies to IP and so does not exclude the possibility of other local principles that
characterize directly valid inferences. There is nonetheless a very general problem
for this kind of approach: since valid derivations already occur in some meaning-
conferring rules, we risk circularity in definition. Indeed, some valid applications
of I-rules are defined using valid derivations, and valid derivations are defined
compositionally from valid applications of rules. In NJ we have this problem for
⊃I since its applications are valid iff they take as input valid derivations.20 In PTS,
this circularity is solved, at least in logic, with the inductive global definition of
valid derivations that we already saw.21 The moral seems to be that local defini-
tions of validity are in general bad suited for rules of deduction - that is, rules

16 (Milne, 2015), pp. 215-216, and (Gabbay, 2017), p. S113.
17 (Dummett, 1991), p. 258.
18 (Dyckhoff, 2016), pp. 82-83.
19 (Ceragioli, 2019).
20 Moreover, both ⊃ and applications of E-rules can already occur in these derivations; chapter

11 of (Gentzen, 1969a) 11 and (Prawitz, 1971) p. 285.
21 There is nonetheless a problem in extending the notion of canonical proof to the complete

theory of intuitionism, as opposed to the purely logical fragment of this doctrine. This observation

8
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3. THE PROBLEM WITH EX FALSO QUODLIBET

which take derivations as inputs - and there are good reasons to believe that good
systems for interesting logical calculi should contain this kind of rule.

3 The problem with ex falso quodlibet

Already Prawitz found a clear justification of minimal logic in PTS.22 Nonetheless,
the extension with ex falso quodlibet in order to obtain at least intuitionistic logic
is problematic. Usually, the problem of including efq in PTS is analyzed only in
relation to IP, while as emerges from the considerations of the previous section, a
complete investigation regarding its PTS-validity is needed. Let us start with IP
and then extend our investigation to validity tout court.

3.1 IP and efq

At the beginning of his investigation of IP, Prawitz adopted something like a de-
flationary account of efq. Indeed, since apparently this rule is neither an I nor an
E-rule, IP is not a requisite for its acceptability and so he merely shows that it
does not disturb the normalization procedure regarding the other rules.23

But of course this solution would be improper: when we impose IP we assume
that every logical rule has to be considered as an I or an E-rule, otherwise the
requirement loses its raison d’être.24 So, considering efq as neither an I nor an
E-rule means considering it as part of an atomic base, and hence valid only within
some of these bases.

Another, more promising attempt consists in interpreting efq as an elimination
rule, relabeling it ⊥E. If we accept the label ⊥E for efq, that is we decide to
consider it as an elimination rule, then we have to justify it. The obvious problem
is that there seems to be no introduction rule for ⊥, so no chance of justification
via IP. There are three proposals to solve this issue:

Dummett ⊥I has the form b1 b2 . . .
⊥I ⊥

where the bi run through all

the atomic sentences of the language;25

is related to one of Shapiro’s criticisms of Tennant’s proof-theoretical logicism ((Shapiro, 1998), p.
613), but it is essentially a consequence of the old Hilbert’s problem of the purity of methods. See
also (Dummett, 2000), p. 269-274.

22 (Prawitz, 1971).
23 (Prawitz, 1965).
24 Dummett even suggested that harmony should be a requirement for the entire language, not

only for logic; (Dummett, 1991), p. 287.
25 (Dummett, 1991), p. 295.

9
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3. THE PROBLEM WITH EX FALSO QUODLIBET

Read ⊥E is justified by the absence of an introduction rule for ⊥;26

Milne ⊥I is a non-logical and non-formal rule that depends on the context, like
0 = 1⊥I ⊥ .27

The first two solutions treat⊥ as a logical constant, while the last one relegates
it to the non-logical vocabulary. If we accept the first formulation of ⊥I it is
clear that IP holds. Indeed we have the following kind of maximal formulae and
reduction step:

...
b1

...
b2 . . .

⊥I ⊥⊥E
bi

 
...
bi

Nonetheless, this kind of solution has a big disadvantage: the meaning of ⊥
is not independent of the non-logical fragment of the language. Indeed, since we
treat it as a kind of conjunction of all the atoms, if we change the class of atoms
then we change its meaning. So it seems that the meaning of ⊥ is not fixed for
every language, and it can change in different contexts. Dummett speaks on this
regard of a lack of ‘invariance’ of ⊥.28

Moreover, nothing says that ⊥ has to be false, that is that there cannot be a
valid derivation for it from correctly asserted assumptions, as observed by Nils
Kürbis.29 Indeed let us assume that ⊥E and the first version of ⊥I were enough to
define absurdity. Let us now consider the following scenario: in our pre-logical
language every atomic sentence is true.30 If we do not need pre-logical knowledge
to understand absurdity, the meaning of ⊥ should be unaltered in this case, and
as a conclusion absurdity does not need to be false, since it is tantamount to the
conjunction of all atomic sentences, which is a true sentence in our toy-language.

26 (Read, 2000), p. 139. To be precise, this justification was already present in (Cozzo, 1994)
(p. 110) and the author claims that he heard Prawitz suggesting this idea during the 1980s.

27 (Milne, 1994), p. 64.
28 (Dummett, 1991), p. 296. Of course, the same lack applies to negation since its meaning

depends on that of absurdity. We could even observe this phenomenon directly for negation, by

the rule (see (Milne, 1994), p. 81):

A
...

b1

A
...

b2 . . .
¬I ¬A

Nonetheless, I think that using ⊥

distinguishes more clearly between the logical and the non-logical aspects of the meaning.
29 (Kürbis, 2015a) and (Kürbis, 2015b).
30 This of course can happen only for deeply deficient languages.

10
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3. THE PROBLEM WITH EX FALSO QUODLIBET

Indeed, if it were not for non-formal contradictions like ‘this is a completely red
and completely green coloured spot’ or ‘this body is heavy and light’, or at least
factually false sentences like ‘the Moon is made of cheese’, what problems there
would be in accepting ⊥ among our beliefs? According to Kürbis, from this
observation we have to conclude that the rules for ⊥ do not offer a complete
characterization of the meaning of “absurd”. Kürbis seems to say that the loss of
invariance is enough to reject the idea that we can catch the meaning of⊥ using an
inferentialist theory of meaning. Nonetheless I think, with Dummett, that all that
we can conclude from this observation is that a part of the meaning of absurdity
does not pertain to logic. (Dummett, 1991) indeed makes the same observation of
Kürbis and concludes:31

“It is, however, important to observe that no appeal has been made
to the principle of consistency, and that the logical laws do not im-
ply it. We may know our language to be such that not every atomic
statement can be true; but logic does not know that. As far as it is
concerned, they might form a consistent set, as they are assumed to
do in Wittgenstein’s Tractatus. The principle of consistency is not a
logical principle: logic does not require it, and no logical laws could
be framed that would entail it.”

Hence, far from being a problem of proof-theoretic semantics, this situation seems
to be a well-known aspect of this theory, in line with some positions regarding
logic. Of course, philosophers who do not share this position see it as a problem,
but this holds for every philosophical consequence of PTS.

The second solution, proposed by Stephen Read solves the problem of invari-
ance of ⊥. The idea naturally arises from a reformulation of IP proposed by the
author, according to which E-rules are obtained as results of the application of a
function to a set of I-rules. Nonetheless, I think that this proposal has nothing to
say about the falsity of ⊥, for which we have to accept Dummett’s position.

The third alternative accepts in some way both Dummett’s observation about
the lack of invariance of ⊥ and the conclusion, derivable from Kürbis’s obser-
vation, that part of its meaning comes from the non-logical territory. We could
say that while Dummett’s solution isolates only the logical part of the meaning of
⊥, Milne’s solution accepts a completely non-logical meaning-conferring rule for
this constant, leaving in some way open the question of the logical status of ⊥E.

There have been a lot of logical investigations regarding IP and the rules for
absurdity, but the problem of its PTS-validity has been guiltily overlooked.

31 P. 295.

11
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3. THE PROBLEM WITH EX FALSO QUODLIBET

3.2 Validity of efq

Of course, inconsistent atomic bases pose some problems for the validity of efq.
Since the validity of a rule in B (equated to an open derivation) asks the preser-
vation of validity of closed derivations in any extension B′ of B (clause 3 of
definition 4), this rule cannot be valid in any atomic base that has incoherent but
non-trivial extensions. Hence, this rule is invalid even in coherent bases, as op-
posed to what is usually believed. A fortiori, validity tout court of efq is out of the
question.

To save efq at least in coherent bases, we could “update” the definition of
validity in B as Prawitz did in his (Prawitz, 1973) and (Prawitz, 1974). In those
papers, he substitute clause 3 with the following:

3’. D is an open derivation and every closure of D (obtained by replacing each
open assumption of D by a closed derivation of it that is valid in B) is valid
in B.

That is, he fully neglects extensions of atomic bases.32 In this way, he can claim
that efq is valid at least for coherent atomic bases.33 Following Dummett’s sugges-
tion that consistency is not a logical property, we point out that with this change
efq is valid for incoherent trivial atomic bases as well.34

Someone could wonder why we should accept incoherent bases and especially
incoherent non-trivial ones, since they are the main cause of all our problems in
justifying efq. By excluding them from the class of acceptable atomic bases, this
rule would become valid in general. This solution has a clear connection to the
proposed I-rules that we saw in the previous paragraph: the adoption of Read’s
rule entails essentially a rejection of incoherent atomic bases, while the adoption
of Dummett’s rule entails that every incoherent base is trivial.

Before evaluating the philosophical opportunity of such a restriction on the
class of atomic bases, let us focus on some technical details. This restriction is
a workable solution only with the original clause 3 of definition 4 in place of the
recently proposed alternative 3’. Indeed, if we evaluate open derivations in atomic
bases without considering their extensions, we need incoherent non-trivial atomic
bases in order to reject some unwanted open derivations. In other words, with

32 Schroeder-Heister in (Schroeder-Heister, 2006) registers this change in Prawitz’s definition,
but decides to remain with the first formulation; see note 19 on page 567

33 (Prawitz, 1974), p. 243.
34 By selecting even smaller classes of atomic bases we could find justifications of other logics.

As an example, by considering only decidable predicates it should be possible to justify classical
logic. Interestingly enough, this resembles Beall and Restall’s path towards logical pluralism: (Beall
and Restall, 2006).

12
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3. THE PROBLEM WITH EX FALSO QUODLIBET

clause 3’ we cannot have efq valid in general without having unwanted derivations
as well. Let us see an example.

Of course, our definition of validity should not prove the open derivation

¬p
q

as valid in general, if p and q are atomic. So this derivation should be invalid in
at least an atomic base B. According to clause 3’, in order to do this, we need
to have a closed derivation for ¬p in B. Indeed if it is impossible to close the
derivation D for ¬p in B, this derivation become vacuously valid in it. Since ¬p
is logically complex, if D is valid in B, then by fundamental assumption there
is a canonical derivation D′ of ¬p that ends with an application of ¬I. It must be
closed and its form has to be

[p]
...
⊥¬I ¬p

Let us now consider the open sub-derivation of ⊥ from p. This is an open deriva-
tion and so it is valid in B iff it can be closed by a valid derivation in B so that
the result of the closure is again a valid close derivation. But the closure of a
derivation of ⊥ from p results in a closed derivation of ⊥, so B has to be inco-
herent. Now, if B were trivial as well, q would be provable in it as well. So, if we
accept only coherent or trivially incoherent atomic bases and use clause 3’ of the
definition of validity, there would be a valid derivation of any atomic sentence q
from the negation of any other atomic sentence ¬p. The validity of this unwanted
derivation makes unpalatable clause 3’, since it makes efq valid (in general or in
some specific bases) only together with some very repulsive rules.

As we already saw, with clause 3 in place of clause 3’ efq cannot be valid
only in coherent bases. Nonetheless, by restricting atomic bases to just coherent
and trivial ones we have the validity of this rule in all atomic bases; that is, its
validity stricto sensu. Moreover, the justification of ¬p

q which we just saw
regarding clause 3’ is blocked for clause 3. Indeed, with this clause in its place,
to falsify this rule we just need a base B that has at least an extension B′ that
closes the derivation of ¬p and a further extension B′′ that closes a derivation of
⊥. It must be noticed that while B′′ must be incoherent, B′ need not, since it
just closes the derivation of ¬p, requiring a derivation of ⊥ possibly with p as an
open assumption. Now, even if B′′ were trivial (as it must if we impose triviality
to any incoherent base) and so proved q, B′ would still be an extension of B

13
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which enables the proof of ¬p without proving q as well. It should be remarked
that this reply works only if we restrict atomic bases to coherent or trivial and
not just to coherent ones. Indeed the incoherent (and possibly trivial) base B′′

is needed for the rule not to be vacuously valid. So, following the comparison
between restrictions and rules, it seems that Dummett’s rule is needed instead of
Read’s one, if we want efq not to have unpalatable companies.

We can so announce our first bad conclusion:

Theorem 3.1 (Lack of invariance of ⊥). If efq is valid, ⊥ is not invariant.

Proof. While Read’s choice of an empty set of I-rules for ⊥ establishes both IP
for efq and invariance for ⊥, Dummett’s I-rule for ⊥ suits only IP. To assume
an empty set of I-rules for ⊥ is equivalent to assume only coherent atomic bases
in the definition of validity, and this has unacceptable consequences. Dummett’s
rule, which is equivalent to assume only coherent or trivial atomic bases, solves
this issue, but at the cost of the lost of invariance for ⊥.

Let us now consider our third alternative: Milne’s proposal of non-logical
I-rules for ⊥. This move is essentially a rejection of the logical status of this
constant, and does not lead to any evident justification of efq. Indeed, how could
such a rule even suit IP with efq? The only alternative, in this case, should be
accepting the non-logical status of efq as well, which will become justified in
those bases in which it is assumed. This alternative could be seen as a surrender,
but there are nonetheless good reasons to defend Milne’s setting. Indeed, it can
clearly be identified with an unrestricted acceptance of all possible atomic bases,
and this should be the standard position, lacking any reasonable reason to restrict
them. Moreover, the need for incoherent, trivial bases makes the situation even
worse, since while the exclusion of all the incoherent bases could be justified
by pointing out (controversially and against Dummett) that logic teaches that the
world is coherent, the adoption of only those incoherent bases that are trivial is
obviously justifiable only through efq, and so circularly. Hence, we conclude:

Theorem 3.2 (Circularity of efq). In PTS efq can be justified at most in a circular
way.

4 Conclusion

In the first section of this paper, we defined validity in PTS and explained why
such an explicit definition is not only desirable, but even needed for our justifica-
tion of logic to be well-founded. Some objections and different starting points are
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evaluated and shown inadequate. In the second section, we discussed the rule of
ex falso quodlibet and its problems in PTS. Three proposals are evaluated: Read’s
idea that there should be no I-rules for ⊥, Dummett’s idea that the I-rule for ⊥
should have all the atomic sentences as premises, and Milne’s idea that the I-rule
for ⊥ should be extra-logical. It is argued that, while both the first two rules suit
IP, only Read’s one suits invariance, that is it gives a meaning to ⊥ which does
not depend on the non-logical part of the language. Nonetheless, it is also shown
that Dummett’s rule is the only alternative that could make efq valid according to
the definition that PTS gives of this notion, without at the same time making valid
some obviously unacceptable rules. As a first conclusion, the validity of efq can
be achieved only at cost of a lack of invariance for ⊥. In conclusion, it is shown
that Dummett’s rule and so efq can be justified only in a circular way, making the
case for Milne’s defeatist proposal of a non-logical treatment of absurdity.
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