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Introduction

Proof-theoretic semantics is a well-established inferentialist theory of meaning that develops ideas
proposed by Prawitz and Dummett. The main aim of this theory is to find a foundation of logic based
on some aspects of the linguistic use of the logical terms, as opposed to the regular foundation offered
by a model-theoretic approach à la Tarski, in which the denotation of non-linguistic entities is central.

Traditionally, intuitionistic logic is considered justified in proof-theoretic semantics (although some
doubts are raised regarding ex falso quodlibet). In the first chapter of this thesis I give a general
introduction of logical inferentialism and a summary of the standard development of proof-theoretic
semantics. In the first section about inferentialism I already discuss the possibility of a dependence
relation between the meaning of the logical terms, which is not considered in standard proof-theoretic
semantics, but only in some of its recent modifications, as we will see in the second chapter.

Even though proof-theoretic semantics has made big progresses in the last decades, it remains
nonetheless controversial the existence of a justification of classical logic that suits its restraints.
In the second chapter I examine various proposals that try to give such a justification: Prawitz’s
proposal of a classical rule of reductio, Milne’s recent formulation via general introduction rules,
Rumfitt’s bilateral systems, Hacking’s and Restall’s proposals to base semantical investigation on
sequent calculus instead of natural deduction, Boričić’s and Read’s proposals of a multiple-conclusion
formulation of natural deduction and Milne’s and Prawitz’s different proposals of rejecting purity and
simplicity as definitional requirements of I-rules. I conclude that only the last proposal has some
chances of success, but that it needs some serious change in order to work. Indeed I argue (contra the
mainstream opinion of some experts in proof-theoretic semantics) that a sound objection used to reject
Boričić’s and Read’s solutions based on multiple conclusions leads inevitably to the abandonment of
multiple assumptions as well. Given this position, the proposal of accepting meaning-conferring rules
in which more than one connective occur has to be endorsed even in order to justify intuitionistic
logic.

In the third chapter, I develop a new version of proof-theoretic semantics in order to deal with this
important change. I manage to prove the following results for the single-assumption single-conclusion
formulation of both classical and intuitionistic logic:

Weak separability: To prove a logical consequence A $ B we only need to use the rules for the
logical constants that occur in A and B, together with the rules for the constants on which those
depend.

Harmony: For every derivation A $ B, there is an equivalent derivation in which there are no
maximal formulae.

In order to prove the last result, I adapt the notion of maximal formulae to our new context and
downgrade the usual requirement of normalization to the bare existence of normal form. Both changes
are defended in the thesis. I then discuss the possibility of giving an explicit proof-theoretic definition
of validity in this new framework. While there are no problems for intuitionistic logic, some issues are
discussed regarding classical logic.

Since there seems to be no reason to exclude that more than one logic suit the desiderata of this
revised proof-theoretic semantics, I conclude the thesis with a disquisition about logical pluralism in
chapter 4, that is, the thesis that more than one logic is correct. In spite of the general antirealist
approach about meaning endorsed throughout the entire thesis, I evaluate the acceptability of such a
pluralist position also according to an agnostic position regarding meaning and in a realist framework.
I conclude that the question cannot be settled without specifying a precise theory of meaning but that
logical pluralism suits both realism and antirealism. However, while according to the realist pluralism
two logics can disagree and nonetheless speak of the same logical terms, according to the antirealist
version of this thesis two logics that disagree on the behaviour of a logical term speak of different
entities. As a consequence, in this framework the possibility of a disagreement in logic is admitted
only for applications, à la Carnap.
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I try to isolate the proof of formal results in appendix B, in order to render the thesis more fluid. In
appendix A, I give a schematic presentation of the systems developed in the thesis. The thesis focuses
on natural deduction systems, and we skip to sequent calculus only to make easier some proofs. The
meaning-theoretical reasons for doing so are explained in section 2.4.1.

Notation and Preliminaries

I will use capital Latin letters to denote formulae, lowercase Greek letters to denote real sentences
and lowercase Latin letters to denote real atomic sentences. So, while ‘A’ is just used to designate the
possible occurrence of a sentence, ‘γ’ and ‘p’ should be intended as real sentences, like ‘it is raining’
and ‘it is raining and I am sad’.

I will speak of a “rule of inference” or simply of a “rule” to refer to the general schema of inference,
in which only schematic sentences and formulae occur and only the logical constants that are essential
to the application of the rule are displayed. As an example, Modus Ponendo Ponens is the rule of
inference:

A Ą B A
MPP

B

With “inference” or “application of a rule” I refer instead to the examples of a rule of inference,
that is, the result of a uniform substitution of sentences or formulae in place of the schematic formulae
of the rule. So an application can be fully formal, as in

A^B Ą B A^B
MPP

B

or it can regard real sentences, like in

1 P N Ą 2 P N 1 P N
MPP

2 P N
We will frequently refer to real sentences specifying only their logical structure, that is, using low-

ercase Greek and Latin letters. The applications of rules constructed in this way are to be considered
as real inferences regarding sentences, as opposed to inferences constructed using formulae.

I will use capital Greek letters to denote, sets, multisets, and lists of formulae or sentences. I will
specify each time which of these readings is the right one.

4



Chapter 1

Inferentialism

1.1 Different kinds of inferentialism and their problems

Inferentialism is a theory of meaning that considers the inferential role of a linguistic object as the
main constitutive part of its meaning.1 There are different grades and flavours of inferentialism, but
here we are interested only in a very precise kind of inferentialist theories of meaning for the logical
constants: proof-theoretic semantics. Nonetheless, we will be very general in this first chapter, in
order to evaluate some alternatives generally underestimated by standard proof-theoretic semantics.

1.1.1 Natural Deduction

We will deal meanly with natural deduction systems, but we will also use sequent calculus as an
instrument to prove some metatheorems for the systems of the first kind.

Natural deduction gives the following very elegant formulation of minimal logic:

A B
^I

A^B
A^B

^E
A

A^B
^E

B
A

_I
A_B

B
_I

A_B

A_B

rAs

...
C

rBs

...
C

_E
C

rAs

...
B

ĄI
A Ą B

A Ą B A
ĄE

B

rAs

...
K

 I
 A

 A A
 E

K

Intuitionistic logic can be obtained by extending minimal logic with either of these rules:

K
ex falso quodlibet

A
 A A_B

disjunctive syllogism
B

We call NJ the system obtained extending minimal logic with ex falso quodlibet. Classical logic
can be obtained adding either of the following rules to intuitionistic logic or either of the first two
rules to minimal logic:

r As

...
K

classical reductio
A

  A
  E

A
tertium non datur

A_ A

rAs

...
B

r As

...
B

dilemma
B

These are the standard natural deduction systems for minimal, intuitionistic and classical logic.2

Let us notice that only one of the rules for classical logic can be easily categorised as an I or an E-rule:
we will see that this fact leads to some interesting problems in the justification of this logic. Moreover,
even though   E is unquestionably an elimination rule, it has a quite strange structure nonetheless
since several occurrences of negation are removed. On the contrary, ex falso quodlibet can arguably
be considered as an E-rule for K. In the development of this work, we will display also other, more
exotic systems for these logics.

1[Brandom, 2000]
2I take this overview from [Milne, 1994], p. 51-52.
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1.1.2 Holism, molecularism and atomism

Let us now consider the inferentialist reading of natural deduction. Generally speaking, in an in-
ferentialist approach the logical rules define the meaning of the logical constants they are about.
Nonetheless, it is not necessary for all of them to define the meaning of the logical constant, it can
also be defined by a proper subset of them. When this is the case, we distinguish between:

• meaning-conferring rules;

• non-meaning-conferring rules.

When the second class is not empty, we need justification for its elements. That is, if a rule is not
justified because it gives meaning to a logical constant – so it is not valid by definition – it must be
validated by something else. We will deal later with the problem of non-meaning-conferring rules,
now let us analyse the choices we can do about meaning-conferring ones.

Meaning of sentences and meaning of terms

First of all, let us point out a preliminary observation. Since inferences deal with sentences (or
judgements, or propositions - we will not distinguish between these alternatives here) but not directly
with terms, every inferentialist theory of meaning treats directly the meaning of sentences and only
indirectly those of terms.

Definition 1.1.1 (Meaning of a term). The meaning of a term of the language L in a sentence is the
contribution made by it to the meaning of the sentence.

So the meaning of the sentence comes first, and the meaning of the terms can be reconstructed
from it.3

Of course, we will not search for a complete picture of the relation between the meaning of terms
and the meaning of sentences. It is enough for our purposes to focus only on the logical terms, and
we will be satisfied with an informal specification of the relation between the meaning of the logical
sentences and the meaning of the logical terms that occur in them. Some explicit reconstruction
of the relations between logical (and also non-logical) terms and sentences have been proposed by
Nissim Francez and Gilad Ben-Avi for proof-theoretic semantics, but we will be happy with the bare
statement that the rules that give meaning to the logically complex sentences also give meaning to
the logical terms.4

In the language as a whole

Inferentialism, like other theories of meaning, is compatible with different positions concerning the
relation between the meaning of different sentences. We will first of all focus on the dependence relation
between the meanings of all the sentences (logical and non-logical) of the language. In general, we
can easily detect two very extreme positions, and subsequently all the intermediate ones.

Definition 1.1.2 ((General) Meaning holism). The meaning of every sentence of the language L
depends on the meaning of every other sentence of the language.

This position has been endorsed by Wittgenstein and by Quine, and arises from the observation
that it is not generally possible to isolate the meaning of a term from that of every other term.5

To reject this thesis, philosophers have usually endorsed an opposite position:

Definition 1.1.3 ((General) Meaning atomism). The meaning of every sentence of the language L
is independent of the meaning of every other sentence of the language, apart from its sub-sentences.

So, according to this position, the meaning of atomic sentences should be independent one from
another.

We can see that both positions are, at least in principle, acceptable in inferentialism, if we focus
on the fact that we do not have any condition on the rules that define the meaning. Of course, a bare
sufficient condition to have meaning holism in inferentialism is that every sentence of the language

3This strange inversion in the priority of the elements of the language is one of the great heredity of Frege. The
meaning of a sentence can depend on the meaning of a term, but this must depend on the meaning of another sentence.
In other words, the chain of dependences has to be rooted in sentences and not in terms (to see how strong is the heredity
of this intuition in the analytical tradition, consider that also Kripke’s theory of ‘initial baptism’ for the “meaning” of
the names makes sentences more primitive than names).

4[Francez and Ben-Avi, 2011].
5[Quine, 1951].
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occurs in a meaning-conferring rule of each given sentence. Since the meaning of terms is given by
the meaning of sentences, this circularity will involve also the terms.

On the contrary, a necessary condition to have meaning atomism is that there are no meaning-
conferring rules that have non-schematic occurrences of atomic formulae. This, of course, is possible
only if every meaning-conferring rule of an atom is a non-linguistic act, as a pure act of observation
or something similar.6 Another necessary condition for atomism is that only sub-sentences of the
conclusion can occur in the meaning-conferring rules for non-atomic sentences.

There are reasons why none of these alternatives is really satisfying for a general theory of meaning.
One of the main results of this work will be the conclusion that also for the logical fragment of the
language, none of these alternatives is acceptable.

I think a more satisfying approach is that of molecularism:

Definition 1.1.4 ((General) Meaning molecularism). The meaning of every sentence of the language
L is independent of the meaning of some other sentences.

This position has been endorsed explicitly by Dummett and Tennant and is now the standard po-
sition in proof-theoretic semantics.7 If expressed in this way, molecularity is a very vague requirement
for a theory of meaning – it says nothing about which sentences determine the meaning of a given
sentence –, but it is not easy to find good proposals for a specification of this position. Whilst, on the
one hand, it is clear that we want to restrict the dependence of the meaning of a sentence from that
of only related and less complex sentences, on the other hand, we need a clear specification of this
intuitive requirement. Dummett seems to point at a system of different semantic clusters that should
explain how the meanings of sentences are related each other but, in our case, we are happy with a
very weak formulation of this position:

Definition 1.1.5 ((General) (Minimal) Meaning molecularism). The dependence relation between
the sentences of the language L is not circular.

The idea behind this reformulation is that the problem with holism is that we could never learn a
language the meaning of which is holistic, since in order to understand a sentence we should already
know the meaning of all the other sentences. A similar impossibility arises when there is a circular
dependence of meaning. Indeed it is obvious that if the meaning of a language is holistic, then, given
two sentences α and β, in order to understand the meaning of α we need to know the meaning of
β and in order to understand the meaning of β we need to know the meaning of α, so circularity of
meaning follows from holism. As a consequence, the rejection of circularity of meaning entails (at
least a weak version of) molecularism.

Someone could argue that, since molecularism does not entail non-circularity, we should not neglect
the possibility of a molecular and circular language.8 As an example, we could have a language with
atomistic meanings for all its sentences apart from γ and δ, with the meaning of γ depending on the
meaning of δ and vice versa. While it is technically true that there is such a possibility, it seems
that the same philosophical reasons why we want a molecular meaning prevent the acceptability of
its circularity.9 So this possibility suits the letter but not the spirit of molecularism, and we will not
consider it here.

Although we will deal exhaustively only with the logical vocabulary, we still need to take some
positions regarding meaning in general, at least in order to specify what is the relation between the
meaning of logical and non-logical terms. For example, a further reason to reject meaning holism
regarding the language as a whole is the commonly accepted thesis that logic is both autonomous and
innocent with respect to the meaning of non-logical terms: to grasp the meaning of a logical term
we do not need to grasp that of a non logical one, and vice-versa. This is the first consequence of
meaning holism that we can reject concerning logic. We could take position also regarding another
kind of holism, that deals only with the meaning of logical terms, and asks: is the meaning of a
logical constant dependent from that of every other logical constant? We will see in section 1.1.3 that
our position regarding these two issues imposes severe restrictions on the systems, when considered
together with the analyticity of logic.

6Although the naïf idea of a pure (that is not inferential) act of observation is something we should dismantle,
according to a lot of contemporary epistemology, we have to consider the fact that here we are interested only to
linguistic inferences.

7[Tennant, 1987] and [Dummett, 1991].
8[Steinberger, 2011a], p. 631 poses a similar criticism.
9Dummett too explicitly rejects circularity of meaning, as Steinberger recognises. See [Dummett, 1991], p. 257, that

we will use in detail in chapter 2.
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In the logical language

Regarding pure logical language, meaning holism is usually rejected, and it is commonly believed that
at least for intuitionistic logic we can devise an atomistic theory of meaning: the meaning of every
logical constant is independent of the meaning of the others. The standard formulation NJ in natural
deduction seems to achieve such a result, since in it every logical constant has its set of rules, and
there is no intersection between them. Given this property, a fortiori in a meaning-conferring rule
for, as an example, conjunction only conjunction will occur.

Nonetheless, we will see in chapter 2 that meaning atomism is only apparent for standard natural
deduction formulation of intuitionistic logic, and that an atomistic theory of meaning can lead us
only to a much weaker logic. In order to save intuitionistic logic and classical logic, we need a more
permissive position:

Definition 1.1.6 ((Special) Meaning molecularism). The dependence relation between the meaning
of the logical constants is not circular.

We can make this position more precise by defining a relation ă of dependence of meanings:10

Definition 1.1.7 (dependence of meaning). a ă ‘ (the meaning of ‘ depends on the meaning of
a) iff there is a sequence of logical terms ˝1, . . . , ˝n such that ˝1 “ a, ˝n “ ‘ and for every 1 ď i ă n
˝i occurs in the premisses or in the discharged assumptions of a meaning-conferring rule for ˝i`1.

Using this definition, we can offer a precise formulation of the positions regarding relations between
meanings:

Definition 1.1.8 ((Special) Meaning positions). A logical system can give meaning to its constants
according to one of the following positions:

atomism: for every logical constant ‘, there is no distinct logical constant a such that a ă ‘;

holism: for every pair of distinct logical constants ‘ and a, it holds that a ă ‘;

molecularism: for every pair of distinct logical constants ‘ and a, it does not hold that both a ă ‘

and ‘ ă a.

From its definition, it follows that ă is a transitive relation (for every triple of logical constants
d, m, b if d ă m and m ă b then d ă b). Nonetheless, it is important to notice that it is not
anti-symmetric (for every pair of logical constants d, m if d ă m and m ă d then d “ m); indeed we
want to be able to distinguish between different logical terms also in a holistic theory, in which they
all depends from each other.11 That is we want to be able to treat languages in which there are pairs
of connectives ˝ and ‚ such that ˝ ă ‚ and ‚ ă ˝, but nonetheless ‚ ‰ ˝. The reason for this is the
following: also in a language with holistic meaning or in which the meaning of a logical term depends
on the logical term itself, logical constants are not identical each other; as an example, although we
found out that the only good theory of meaning for classical logic is holistic, p _  p still remains a
classical logical law, while p^ p still remains a the negation of a theorem. Even though we consider
holistic and circular meaning as a defect for a language, they are not equivalent to triviality.

An interesting example of this possibility is the following:

rAs

...
:

"I
" A

A " A
:I

:

If these are all and the only meaning-conferring rules for " and :, then the meaning of each of them
depends on that of the other, that is "ă : and : ă". By transitivity, we can “close the circle” and
derive "ă" and : ă :, so the meaning is not molecular. Nonetheless, " and : can not be identical
each other, since : is zeroary while " is unary. Moreover, these two rules have the same structure of
 I and  E, just the second is interpreted as an introduction rule for absurdity. Of course I do not
want to defend this interpretation of the rules for negation, nonetheless, it is important to notice that

10Cozzo investigates something similar, even though for non-logical terms ([Cozzo, 1994a], pp. 246-250, [Cozzo, 2002],
pp. 32-34 and [Cozzo, 2008b], p. 305), while Milne and Prawitz develop independently the same idea for logical terms
([Milne, 2002] and [Prawitz, 2015a]). As we will see, Dummett evaluated this possibility as well, but without developing
the details ([Dummett, 1991], pp. 256-258).

11Neither it can be symmetric (for every pair of logical constants d, m if d ă m then m ă d), since the meaning of
‘ can depend on the meaning of a although this last constant is atomistic in meaning.
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the identity of  and K is not a consequence of it. Indeed, we have different theorems for these two
terms, whatever interpretation we give of their rules.

Also the fact that ă is neither reflexive (for every logical constant d, d ă d), nor anti-reflexive
(for every logical constant d, d ć d) is not inessential, since we want to distinguish between a logical
constant that depends on itself and a logical constant that does not depends on itself. That is, the
dependence of a logical term from itself should neither be obvious – such that also constants that
do not depend on any other constants still depend on themselves – nor impossible – such that no
constants can depend on itself –, but simply possible. As an example of the difference between those
two situations, let us consider the following rules:12

A
‹I

A ‹B

rAs

...
B

rAs

...
˚B

˚I
˚A

Of course, we assume that these are all the meaning-conferring rules for ‹ and ˚, so they are both
atomistic in meaning. The first rule poses no problem of circularity since ‹ does not occur in any
assumption or premise of ‹I. So ‹ does not depend on itself, that is ‹ ć ‹. The second represents
instead the degenerate case in which a constant depends on itself since ˚ occur in the right premise
of ˚I and so ˚ ă ˚. The distinction between these two situations is made possible by the rejection
of reflexivity for ă (indeed ‹ does not suit reflexivity) and anti-reflexivity (indeed ˚ does not suit
anti-reflexivity).

We saw that the definition of ă does not prevent self-dependence of meaning and that we can
have direct self-dependence when a term occurs in a premise or in an assumption of its I-rule, or an
indirect self-dependence, when we have a chain of terms ˝1, . . . , ˝n such that ˝1 “ ˝n and such that ˝i
occurs in a premise or in an assumption of ˝i`1I. Now we have to deal with acceptability in general of
logical constants that depend on themselves. That is, although they are not excluded by the definition
of ă, they raise nonetheless the same meaning-theoretical issues that we saw when we were defining
general meaning holism, so it could be unclear whether we should reject a ă a or not. The three
definitions do not speak of this particular kind of self-dependence, so technically speaking we could
have atomistic and molecular languages in which this phenomenon occurs. It is also obvious that in
a holistic language, every logical constant depends on itself, since for every pair of constants a ă ‘

and ‘ ă a, so by transitivity we have both a ă a and ‘ ă ‘.
In order to decide on the acceptability of self-dependent constants, let us consider more closely its

relation with holism. As we saw in the previous section, what strikes us about holism is that if the
meaning of every logical constant depends on that of each other, there is no place where we can start
to investigate in order to search for the meaning of one such constant. The problem is obvious when
we speak of teaching or learning a logical constant, but it is really more fundamental: it is not even
clear how the rules can give meaning to the constants. For this reason, if we consider constants like
˚ as atomistic – since their meaning does not depends on that of other constants –, we lose the main
reason for the distinction between atomistic/molecularistic/holistic theories of meaning.

In our discussion about meaning in the whole language, we decided to identify holism with circu-
larity, since this was enough accurate for our main topic. In this case, we can not follow the same
path, if we want to give a precise analysis of the meaning of logical terms. So we leave the definitions
without a clause for self-dependent constants, but we define another semi-independent requirement:

Definition 1.1.9 (non-circularity). For every logical constant a, a ć a.

As we have already established a non-circular language can not be holistic, since holism entails
circularity. Nonetheless, the inverse entailment does not work, since if we extend a holistic language
with some fresh atomistic rules for a new constant then we obtain a non-holistic language (since the new
constant does not depend on each other) in which nonetheless we have circularity of meaning. Anyway,
since the reason for accepting non-circularity requirement is the same as for accepting molecularity
(and so a fortiori atomicity) of meaning, we will always pair these requirements.13

12The first one is obviously the standard rule of introduction of the disjunction, while the second is the rule proposed
on p. 89 of [Dummett, 2000] for introducing intuitionistic negation. We will shortly discuss the strange status of this
rule.

13This situation is not limited to self-dependent constants: in general, the three cases of atom-
istic/molecularistic/holistic languages are not exhaustive since we can have fusions of them. The fact that the extra
requirement of non-circularity is almost independent of these three positions makes the situation still more complex.
Nonetheless, we will deals only with some kinds of languages, avoiding the ‘monsters’ like circular atomistic languages
fused with a holistic one.
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In this thesis, we will consider as well-defined all molecular and non-circular languages. So we
will assume the restriction: for every pair of (distinct or not) logical constants ‘ and a, it does not
hold that both a ă ‘ and ‘ ă a. Despite this very precise specification, we will sometimes use
“molecular” and “non-holistic” to refer to languages that are both molecular and non-circular, now
that our position has been pointed out.

Circularity in rules and in inferences In this paragraph, we want to point out one of the main
differences between our non-circularity requirement and other similar principles that can be found in
the literature. As already remarked, the example of I˚ violates our requirement, but it has the same
structure of the meaning-conferring rule proposed in [Dummett, 2000] for the intuitionistic negation.
So Dummett completely disregards problems of circularity in definition? Of course, he does not, but
he imposes another requirement, focused on inferences instead of rules:14

“[. . .] the minimal demand we should make on an introduction rule intended to be self-
justifying is that its form be such as to guarantee that, in any application of it, the
conclusion will be of higher logical complexity than any of the premisses and than any
discharged hypothesis.”

A self-justifying rule is the same of a meaning-conferring rule. Apart from other differences, that
are natural since our two frameworks are not the same, this requirement is not enough to exclude I˚
from the class of meaning-conferring rules. Indeed Dummett focuses on applications of rules (that is
inferences), and not on rules when he asks for non-circularity.

We could think that Dummett’s requirement is just stronger than our requirement, since an appli-
cation of the rule in which the conclusion is less complex than some assumptions or some premises is
enough to reject an I-rule, but this is not completely right. Indeed if we focus on applications of rules,
it is natural to consider acceptable all inferences in which the conclusion is more complex than both
premises and assumptions, regardless of the form of the rule from which we obtain the inferences. In
this way we can accept applications of I˚

rαs

...
β

rαs

...
˚β

˚α

in which α is more complex than β. Of course, Dummett adds that this must hold “in any application
of it” (the I-rule), but this does not lead necessarily to our restriction of non-circularity. Indeed the
applications of a rule that violate Dummett’s requirement could be useless, that is it could be possible
to restrict the application of the rule in such a way to save Dummett’s requirement without affecting
the provable results. In this way, we have a rule that does not suit our requirement, but that suits
Dummett’s one, and so our principle is more demanding, at least in this case. As an example, for
Dummett’s ˚-like negation it can be proved that it is always possible to rearrange a proof in such a way
to satisfy his requirement, so we could restrict this rule in such a way to suit Dummett’s criterion.15

Nonetheless, I think that Dummett’s requirement is too weak in this regard because, although this
pair of rules gives a well-founded dependence relation between complex sentences in which the same
logical constants occur, it does not deal satisfactorily with the definition of logical terms. Sure enough,
if a meaning-conferring rule for a logical constant uses the same constant out of the conclusion, we
will always need to already know its meaning in order to define it. And this holds true from the point
of view both of rules and of inferences.16 This is the reason why I decided to impose a non-circularity
requirement already for the rules. Later, we will consider other restrictions on the complexity of the
sentences that can occur in meaning-conferring inferences.

We showed that there are rules that suit Dummett’s complexity principle but not our non-
circularity principle, so we could think that our principle is stronger than Dummett’s one. To be
precise, we can also show some rules that suit our non-circularity principle but that nonetheless do
not suit Dummett’s complexity principle. Indeed let us consider the following rule:

14[Dummett, 1991], p. 258.
15It should be a corollary to normalization theorem and so to the division of the proof-tree in an E-part and an I-part.

See [Read, 2015] for a precise analysis of this rule.
16This is not all Dummett’s rule fault. Peter Milne points out that a similar problem always shows up with negation:

[Milne, 1994], p. 61. Nonetheless, I think that Prawitz’s proposal of dealing with negation as a defined connective is
more promising also in this case since the logical status of absurdity is more flexible.
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C

rCs

...
A

rCs

...
B

’I
A ’ B

This is a completely acceptable I-rule from our point of view, since the only logical term that occurs
in it is in the conclusion. Nonetheless, from the point of view of its applications, we do not have
any restrictions, so the assumptions and premises used in place of C could be more complex than the
conclusion and, as a consequence, it does not suit Dummett’s complexity requirement. In conclusion,
Dummett’s complexity principle and our non-circularity principle are incomparable with each other.

1.1.3 Separability

An important remark is that general atomism/molecularism/holism can be completely independent
of special atomism/molecularism/holism. Indeed while the first thesis regards the relations between
sentences (and so at most real inferences), the second regards the relations between terms in rules.
For example, we can accept general holism, by assuming that the meaning of each atomic sentence
depends on the meaning of every other atomic sentence, and still accept special atomism, if meaning-
conferring rules are purely schematic and just one logical term occurs in each of them. In this way,
the meaning of every, possibly logically complex, sentence ϕ depends on that of every other sentence
ψ, but the meaning of each logical term ‘ is independent of that of every other logical term b. As
an example, according to a theory of meaning of this kind the meaning of “the ship is on the sea and
the tree is in the wood” depends on the meaning of “the dog is on the armchair or the Moon is in the
sky”, while the meaning of “and” and “or” are independent each other.

To keep apart positions regarding general and special meaning relations, we have to accept auton-
omy and innocence of logic, so that the meaning of logical terms is independent on those of non-logical
terms, and vice-versa. So it is a general molecularist position that firmly separates general and special
positions regarding meaning. We will accept the autonomy of logic in this thesis, by accepting only
parametric formulae in rules,17 and innocence of the logic by assuming that no logical term is used to
characterise the meaning of an atomic sentence. These assumptions are necessary if we want to make
sense of our previous definition of molecularity. Indeed without them, we could have a circular depen-
dence of meaning without violating non-circularity requirement, since the dependence of a logical term
on another one can pass through a sentence that occurs non-schematically in their meaning-conferring
rules. As an example, let us consider the following rules:

A ϕ
5I

A5B
α4 β

ϕRule ϕ
A5 C B

4I
A4B

Here A and B are schematic sentences, while α, β and ϕ are real sentences of our non-logical
language. Our non-circularity requirement is ineffective to prevent this kind of situations if we let
sentences occur in a rule in a non-schematic way. Indeed ă deals only with logical terms that occur
in the meaning-conferring logical rules, and from this point of view 5 ă 4 and 4 ć 5, since I5 is a
purely atomistic meaning-conferring rule and 4I uses 5 in one of its premises. Nonetheless, if ϕRule
is a meaning-conferring rule for the atomic sentence ϕ (violating innocence of logic), the meaning of
5 depends on that of ϕ (violating autonomy of logic) and the meaning of ϕ depends on that of 4.
So we have both 5 ă 4, and 5 that depends on 4, that is a kind of circularity that escape from our
non-circularity requirement regarding ă. Of course, we want to avoid it and so we endorse innocence
and autonomy of logic.18

There is a general lesson that we should learn from this episode: handling meaning-conferring rules
we can decide to define the meaning of a logical term from some other terms or not, but in order to
have a language that follows our decision we have to be able to prove some structural properties of
the language. The autonomy of logic and special meaning molecularism are theses about what gives
meaning to the logical terms, and I think that together they give ground to a promising framework
for inferentialism. Nonetheless, these two positions can not be enough if we want to recognise:

Observation 1.1.1 (Analyticity of logic). Every logical consequence is valid in virtue of the meaning
of the logical constants that occur in it.

17The difference between a parametric occurrence is obvious if we consider the difference between an occurrence of
‘3’ and an occurrence of ‘x’ in an arithmetical equation.

18K has to be considered as a logical term - if we want to accept the autonomy of logic -, since it occurs non-
schematically in the rules for negation. We will discuss this topic later.
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First of all, since we decided to discern between meaning-conferring rules and non-meaning-
conferring rules, we will need some kind of justification of the latter if we want logical consequences
to be analytic. Indeed it is obvious that we will use also these rules in order to prove the validity of
logical consequences and, in general, these applications will be unavoidable.

Once we have justified the non-meaning-conferring rules, in order to gain the analyticity of logic,
we have to establish two formal results regarding our systems: weak separability property and weak
subformula property.

Definition 1.1.10 (Weak separability). To prove a logical consequence A $ B we only need to use
the rules for the logical constants that occur in A and B, together with the rules for the constants on
which those depend. That is in order to prove a logical consequence A $ B, it is enough to use the
rules for the constants ˝1, . . . , ˝n such that for every 1 ď i ď n, ˝i occurs in A or B, or for some j ‰ i
such that 1 ď j ď n, ˝j occurs in A or B and ˝i ă ˝j .

In this way the logical truth depends only from the logical terms we are referring to in our state-
ment. Unfortunately, weak separability is not a trivial consequence of which logical terms occur in
the meaning-conferring rules, so it is not a trivial consequence of meaning molecularism.

As an example, let us consider the following formulation of classical logic, and in particular the
rules for negation and implication:

rAs

...
B

ĄI
A Ą B

A Ą B A
ĄE

B
  A

  E
A

K
Ki

A

rAs

...
K

 I
 A

 A A
 E

B

Where the introduction of implication and of negation are considered the only meaning-conferring
rules, and the other rules are justified by them.19 From the point of view of meaning dependence ă,
there seems to be no circularity in the relation of dependence between the logical constants, since Ą
is completely atomistic and  depends only on K.

Nonetheless, if we consider that all the rules except   E are accepted also in intuitionistic logic,
it is obvious that Peirce’s law pA Ą Bq Ą A $ A must be derived using it, since it is a purely classical
law. So in order to prove a logical consequence that only regards Ą, we need to use a rule for  
and probably also a rule for K, even though KćĄ and  ćĄ. So this is a case in which there is
no circularity between the meaning-conferring rules and they are molecular, but, nonetheless, weak
separability is violated. The reason for this possibility rests on the fact that, while molecularity deals
only with meaning-conferring rules, weak separability deals also with non-meaning-conferring rules.
So if we want to have separability as a property that follows from molecularity, we need to impose
some restrictions on the procedure of justification for the non-meaning-conferring rules. For now, we
will just accept separability as an extra requirement, but we will see that in proof-theoretic semantics
it become a provable property of some logical systems.

Another good example of this phenomenon is NJ plus Prior’s connective tonk, in which each rule
expresses an atomistic behaviour, since only a connective occurs in each of them, but the system
violates weak separability:20

A
tonkI

AtonkB
AtonkB

tonkE
B

For example, if we have A “ C _ D and B “ C ^ D, we obtain C _ D $ C ^ D, that can not
be proved using only rules for ^ and _. So we have only two choices: we can reject the analyticity
of logic and accept tonk and C _D $ C ^D, or we can accept analyticity of logic and reject tonk
together with C _D $ C ^D. Of course, our choice is to reject tonk and accept weak separability
and analyticity of logic, but to have a precise analysis of what is wrong with tonk we have to wait
until the next chapter.

tonk is also dangerous for the innocence of logic since it can be used to prove α $ β for every
couple of atomic formulae of the language. So innocence of logic is like molecularity: if we accept it
from the point of view of the theory of meaning, we have to make sure that the language we develop
really follows this restriction. And in order to do this, just checking the meaning-conferring rules is
not enough; we have to investigate the structural properties of all the language.

19Obviously the possibility of this justification should be evaluated but, in this case, we are only interested in the
relation between molecularity and separability in general. Indeed one of the main reason behind proof-theoretic semantics
is to show a justification procedure for non-meaning-conferring rules that naturally takes to separability. But nothing
of this has yet been established for now.

20[Prior, 1960]
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On the other side, while we are sure that the meaning of logical terms should be independent of
that of non-logical terms and vice versa, it is not completely clear that we want logic to be ineffective
to prove new non-logical truths. Obviously, we do not want the non-logical language to be useful to
prove new logical truths (that is, we still want autonomy of logic) since we believe that logical truths
are analytic, nonetheless standard non-logical and non-analytic truths could be reachable only using
logic. That is the extension of the restriction from innocence to separability of logic (that we will call
“ineffectiveness of logic”) has to be justified somehow.

Dummett’s position regarding this problem is controversial because he explicitly rejects the idea
that logic is ineffective for proving atomic sentences but he never uses this position in the inferentialist
part of his work. That is he probably accepts the innocence of logic, but maybe rejects separability
of non-logical truths from logic:21

“The conservative extension criterion is not, however, to be applied to more than a single
logical constant at a time. If we so apply it, we allow for the prior existence, in the
practice of using the language, of deductive inference, since there are a number of logical
constants. Unless, perhaps, ’and’ is an exception, the addition of just one logical constant
to a language devoid of them, or, more generally, the insertion of deductive inference into
a linguistic practice previously innocent of it, cannot yield a conservative extension.”

This point has been frequently ignored in the literature.22 Anyway, we will conclude that at least we
do not want that our logical system proves clearly false non-logical sentences. As an example, we do
not want a logical system that enables the derivation of every sentence.

Let us now consider the last requirement:

Definition 1.1.11 (Weak subformula). To prove a logical consequence A $ B we only need to use
the non-logical language in A and B.

In this way, the logical truth depends only on logical terms, and not on some other kind of
terms. With weak subformula, we have autonomy of logic from the meaning of non-logical terms: to
establish logical truths we do not need any non-logical vocabulary.23 So, while separability deals with
molecularity and could save ineffectiveness of logic if we decide to impose it outside logic, subformula
deals with the autonomy of logic. Surely we want to endorse these two principles in their role of
generalizations of special molecularism and autonomy of logic that regard all the logical derivations
and not just the meaning conferring rules. To ask for them is not surprising since logical truths are
generally considered analytic truths par excellence.

As an example of a result that does not suit weak subformula property, let us consider DxDypx ‰
yq.24 This is not a logical theorem of any well-known system but, nonetheless, it is an obvious
consequence of the arithmetical theorem 1 ‰ 0. So although it is a true sentence, it can not be
analytically true and, for this reason, we do not consider it as a logical truth, by appealing to weak
subformula requirement: in order to prove it, we need to use some arithmetical terminology that does
not occur in it.25

1.2 Proof-theoretic semantics

Proof-theoretic semantics is a special kind of inferentialism, and it is based on two concepts:26

• The property of harmony that justifies non-meaning-conferring rules;

• A distinction between canonical derivations and non-canonical derivations used to define induc-
tively which derivations are valid.

We will devote a section to each of these two aspects.

21[Dummett, 1991] p. 220.
22Indeed Steinberger attributes to Dummett the opposite thesis: [Steinberger, 2011a], p. 619 (N.B. Steinberger uses

the term ‘innocence of logic’ to refer to separability of non-logical results from logical rules, that is to the ineffectiveness
of logic.). A counterexample to this frequent mischaracterization is [Milne, 1994], p. 87.

23Analyticity of logic in an atomistic theory of meaning asks for strong separability and strong subformula property.
24In this work, apart from this brief exception, we will deal only with propositional logic.
25That this sentence raises problems for analyticity of logic is well know, and it is especially problematic for logicists,

since they consider analytically true not only logic but also mathematics: see [Shapiro, 1998a].
26To be precise, there is some controversy about the real relation between inferentialism and proof-theoretic semantics.

Prawitz’s rejects this label for his theory of meaning ([Prawitz, 2015b], p. 60), while Murzi and Steinberger agree with
my categorization ([Murzi and Steinberger, 2017]). I suspect, nonetheless, that the issue is controversial only for the
non-logical fragment of the language, that Prawitz’s theory of meaning investigate with a broadly verificationist (but
not inferentialist) approach.
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1.2.1 Harmony

The standard view in proof-theoretic semantics is that I-rules are the meaning-conferring rule for
logical constants:

Definition 1.2.1 (Meaning of a logical term). The meaning of a logical term is given by its rules of
introduction.

While the application of an I-rule defines the meaning of the conclusion (a sentence), the schematic
rule which is applied define the meaning of the logical term. Indeed introduction rules defines the
contribution of the connective to the meaning of the conclusion, as asked by definition 1.1.1.

There are reasons why for some connectives it seems easier to consider E-rules as meaning-
conferring. For example, we will see that ĄI poses some problems of circularity for the definition
of valid inferences. The possibility of considering ĄE as meaning-constitutive can be a solution to
them.27 [Dummett, 1991] proposed a double-sided justification of logical rules, although it seems that
a verificationist approach (connected with the priority of I-rules) preserves the central role in his work.
Nonetheless, we will see that most of the problems raised by ĄI can be solved using the distinction
between canonical and non-canonical derivations. For this reason, in this work we will consider I-rules
as meaning-conferring and E-rules as justified rules, even though further generalizations about this
assumption could be very interesting.

Already [Gentzen, 1969b] had a similar position (inspired by the constructivist BHK interpretation
of the meaning of logical constants), and later Prawitz developed this idea in a series of works, starting
from [Prawitz, 1965]. As a consequence, there has to be a justification procedure for E-rules, and
Prawitz proposes his Inversion Principle for this purpose:28

“Let α be an application of an elimination rule that has B as consequence. Then, de-
ductions that satisfy the sufficient condition [¨ ¨ ¨ ] for deriving the major premiss of α,
when combined with deductions of the minor premisses of α (if any), already “contain” a
deduction of B ; the deduction of B is thus obtainable directly from the given deductions
without the addition of α.”

To show that a pair of rules for a logical constant observes Inversion Principle, Prawitz uses the
availability of reduction steps. We can justify an E-rule if, when its major premise is derived using an
I-rule, we already have a derivation of the conclusion of the E-rule in the derivation of the premise.
To make this intuition more precise, Prawitz introduces the notion of maximal formula:

Definition 1.2.2 (Maximal formulae (Prawitz)). Given a derivation D, a maximal formula in it is a
formula that is the conclusion of an I-rule and the major premise of an E-rule.

Inversion Principle holds for a pair of I and E-rules iff we can remove the maximal formulae they
generate. The procedure of removal of these maximal formulae is called ‘reduction’ in [Prawitz, 1965]
and justification in [Prawitz, 1973]. These procedures are defined for every maximal formula.

As an example, let us consider the following justification of ^E, given standard ^I:

...
A

...
B

^I
A^B

^E
A

ù
...
A

In order to have harmony for a pair of rules, we have to guarantee that not only there is a
reduction step for every maximal formula, but that there is a way of applying these steps that erases
every occurrence of maximal formulae in the derivation.29 So Inversion Principle is only a necessary
(but not sufficient) condition for harmony.

We also have to consider a generalization of maximal formulae due to the presence of rules in which
the conclusion has the same form of one of the premise, like _E:

Definition 1.2.3 (Maximal sequence (Prawitz)). Given a derivation D, a maximal sequence in it is
a list of formulae C1, ¨ ¨ ¨ , Cn such that:

• C1 is the conclusion of an I-rule.

27[Rumfitt, 2000], p. 790.
28[Prawitz, 1965], p. 33.
29The term ‘harmony’ is introduced in [Dummett, 1991], but the idea that Inversion Principle is not enough to justify

E-rules is already established in [Prawitz, 1965], as we will see later.
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• Ci “ Ci`1, for every i ă n

• Ci for 1 ď i ă n is the premise of an inference used in D, the conclusion of which is the next
element on the list Ci`1;

• The last element of the list Cn is the major premise of an E-rule.

Of course maximal formulae are just special cases of maximals sequence such that n “ 1.
This generalization requires the adoption of another class of reduction steps, which reduces the

length of the maximal sequence. From [Prawitz, 1971] they are called permutative reductions. Now,
we can define normal derivation as:

Definition 1.2.4 (Normal derivation (Prawitz)). A derivation of B from A is normal if there are no
maximal sequences in it.

With this instrument, we can define harmony:

Definition 1.2.5 (Harmony (Prawitz)). The rules for the logical constants of a system are in harmony
iff for every derivation in this system there is a sequence of reductions that brings it to normal form.

Someone could object that harmony is not defined in general, since it relates to reduction steps, and
these are defined only for NJ. To solve this problem, Prawitz proposes a generalization of reduction
steps in his definition of validity exposed in [Prawitz, 1973]. We do not consider this issue here
(although it is a very serious one), because in chapter 2 we will argue that the existence of normal form
is enough for harmony, and while normalization refers to reduction steps and so needs a framework,
existence of normal form is already a general property.30 This change will also make a lot easier our
generalization of the notion of maximal formula for intuitionistic and classical systems in chapter 3.

It is important to remark that, although reduction steps and Inversion Principle are purely local,
harmony is defined as a global property. That is the rules for a logical constant can be in harmony in a
logical system and can be not in harmony in another one. According to Prawitz, this global character
of harmony is not something wrong, but an antidote against some misconceptions about the Inversion
Principle and the acceptability of rules. Indeed, let us consider the following rules for set operations:

Arx{ts
λI

t P λxA

t P λxA
λE

Arx{ts

They seem to be in harmony, but they only satisfy Inversion Principle; that is for every maximal
formula there is a reduction step that “eliminates” it. Nonetheless, we can not find a normal version
of every derivation constructed using these rules. Indeed, let us define t “ λx. px P xq and consider
the following derivation:31

rt P ts1
rt P ts1

λE
 pt P tq

ĄE
K

ĄI1
 pt P tq

λI
t P t

rt P ts2
rt P ts2

λE
 pt P tq

ĄE
K

ĄI2
 pt P tq

ĄE
K

If we try to normalize it, we discover that the only available reduction sequence is circular, that is
in some steps of reduction, we return to its original shape. So there is no normal proof equivalent to
this, and λI and λE are not in harmony:32

“We have thus an example of a system for which the inversion principle holds [. . .] and
where we hence can remove any given maximum formula, but where it is impossible to
remove all maximum formulas from certain deductions.”

This example speaks in favour of a full normalizability requirement since it is obvious that we do
not want contradictory logical systems to pass our criterion. So Prawitz’s choice is comprehensible
and we will follow him on this path. Moreover, this definition of harmony is enough permissible to
justify at least NJ since:33

30On this topic, see also note 50 The defence of ‘existence of normal form’ property is in section 2.4.2.
31[Prawitz, 1965], p. 95.
32[Prawitz, 1965], p. 95.
33[Prawitz, 1965], p. 50, [Prawitz, 1971] p. 256.
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Theorem 1.2.1 (Normalization theorem for NJ). If Γ $NJ B, then there is a normal deduction in
NJ of B from Γ, and this normal form can be found applying the reduction steps for the maximal
sequences in Γ $NJ B.

As a matter of fact, we could reject Prawit’s counterexample also using Dummett’s version of the
complexity principle that we explained in paragraph 1.1.2. Indeed, the inference

 ppλx. px P xqq P pλx. px P xqqq
λI

pλx. px P xqq P pλx. px P xqq

used in the proof of K just seen has a premise that is more complex than the conclusion, so the rule λI
violates Dummett’s criterion. Of course, this is just an indication that we could drop normalizability
if we accept Dummett’s proposal, but it is far from being a complete proof of this result since there
could be other unacceptable pairs of rules rejected by normalizability but not by this other restriction.
Anyway, we will not stress further this topic since we have important reasons to reject Dummett’s
criterion that we partially already exposed. Indeed this principle – in addition to raising some philo-
sophical worries about circularity in meaning-conferring rules – would reject also some introduction
rules that seem completely fine from a meaning-theoretical point of view and that we will use in
chapters 2 and 3 as an essential component for our project.

Harmony and normalizability

The previous reconstruction of the meaning of ‘harmony’ in proof-theoretic semantics is not uncon-
troversial. As we have already noticed, in our formulation this notion becomes global. For this and
other reasons, some authors have preferred to identify harmony with Inversion Principle.

Stephen Read identifies these two concepts and proposes the acceptability of the logical constant
‚ (bullet) that behaves like the lair’s sentence. Its rules are:34

 ‚
‚I ‚

‚

r ‚s

...
C

‚E
C

This example is equivalent to Prawitz’s λx. px P xq, but the important difference between the
two authors is that while Prawitz rejects λx. px P xq asking for normalization, Read accepts ‚ as a
harmonious logical constant. He defends his position in [Read, 2010], where he distinguishes between
inconsistency and incoherence: ‚ is inconsistent since it allows the proof of K, but it is not incoherent
since its E-rule is faithful to its I-rule.35

For this reason, I think I should say a few words of justification for my decision to follow Prawitz’s
original intuition.

1. First of all, we have to consider our framework. We are not interested in formal systems that
do not satisfy weak separability (definition 1.1.10), since we want analyticity of logic (observa-
tion 1.1.1), and it is obvious that both ‚ and λx. px P xq violate it.36 So, also accepting Read’s
proposal of a local reformulation of harmony, we should additionally impose weak separability
as a separate requirement.

2. We will use normalization as a(n a posteriori)37 proof of harmony. Although someone rejects
the identification between these two concepts, I do not think anyone wants to object this side of
the entailment, at least not in the context in which we apply it. Indeed the only controversial
applications of the entailment from normalizability to harmony are caused by rules that do not
suit clearly the distinction between introduction and elimination rules, like Prawitz’s classical
reductio, while in our case we will follow rigorously this distinction. So Read’s rejection seems
to be irrelevant in our case.

3. Our main application of normalization will be in the definition of validity that we will give in the
following section (definition 1.2.8). I think that a definition of harmony should not be evaluated

34[Read, 2000], p. 141.
35[Tranchini, 2015] offers an interesting analysis of these two examples and an alternative definition of harmony.
36Moreover, even though the principle of ineffectiveness of logic is controversial (as we argued at the end of sec-

tion 1.1.3), in this case its violation is clearly unacceptable.
37[Read, ming]
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in isolation, but only in connection with this other notion.38 Furthermore, since proof-theoretic
validity is a global property and the main purpose of harmony is its application in this definition,
a local redefinition of it seems pointless.39

4. Read’s counterexample ‚ can also be rejected for reasons independent from normalization. In-
deed:

(a) ‚I violates both Dummett’s complexity requirement on inferences (exposed in 1.1.2) and
our non-circularity requirement (definition 1.1.9). These restrictions are so natural that it
seems very hard to reject them, and since ‚I is unacceptable, its harmony with ‚E is at
most irrelevant.

(b) Although we call it an introduction rule, ‚I is also an elimination rule for  .40 So ‚ only

apparently suits Inversion Principle, since there is no reduction step for

r‚s

...
K

 I  ‚
‚I ‚

. This is

obvious if we look at the derivation:41

r‚s2 r ‚s1

‚E1  ‚ r‚s2

 E
K

 I2  ‚
‚I ‚

Peter Milne stressed that ‚ does not suit Inversion Principle already in his [Milne, 2015].
His reason to believe this is that an equivalent formulation of the rules for this constant
is42

r‚s

...
K

‚Inew
‚

‚
‚Enew

K

and in every transitive logic in which we have Efq, ‚Enew is equivalent to

‚
‚Enew´new

C

Now, ‚Enew´new is essentially Efq, so it should suit Inversion Principle when paired with
the introduction rule for K. As we will see in section 1.2.3, the topic of Inversion Principle
applied to K is quite controversial.43 Nonetheless, it is obvious that ‚Inew is not an accept-
able candidate, so something must be wrong about this supposed adequacy to Inversion
Principle.44 Despite this clever intuition, Milne, as opposed to Gabbay, did not furnish any
explanation of what is wrong with Read’s argument for harmony of ‚-rules. He only argues
indirectly that there must be something wrong.

1.2.2 Validity

Of course, the main reason to have a logical system is to generate valid derivations, and the main reason
to have semantics is to distinguish between valid and invalid derivations. Proof-theoretic semantics
allows us to do this without reference to models (Tarskian or of other kinds).

38Indeed, [Schroeder-Heister, 2006] proposes an objection to the identification of normalization with validity that is
very convincing. Nonetheless, the precise boundary of harmony seems irrelevant for his argument since he just employs
‘harmony’ and ‘normalizability’ as interchangeable terms.

39To tell the truth, although it can dismantle some scepticisms about its philosophical pedigree, this connection with
the explicit definition of validity may lead also to further criticisms of normalizability, since this definition relies on a
controversial fundamental assumption (assumption 1.2.1).

40For this clever observation, [Gabbay, 2017], p. S113.
41Since this objection holds about Prawitz’s conception of Inversion Principle, it also holds about Read’s reformulation

of it (in [Read, 2010]), that is more demanding.
42This is essentially the reformulation of the rules given by Read himself in his [Read, 2010].
43To be precise, in this paper Milne endorses the thesis that there is no introduction rule for K, although this seems

to be in contradiction with his former position in [Milne, 1994] that we will consider in section 1.2.3.
44[Milne, 2015], pp. 215-216; the author can also strengthen this argument, because of the classical natural deduction

calculus that he develops. Nonetheless, I believe that this partial formulation is already enough to point out the
problematic nature of ‚.
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We could think that a good definition of valid derivations just derives from our characterization
of harmony. It seems that we can justify I-rules because they are meaning-conferring, that we can
justify E-rules by harmony. As a consequence derivations built up from these rules seems justified by
construction.

The only problem with this plan is that some meaning-conferring rules already use valid derivations
in them, so we risk circularity in definition: some valid applications of I-rules are defined using valid
derivations, and valid derivations are defined compositionally from valid applications of rules. In

NJ we have this problem for IĄ since one of its applications

rAs

...
B

A Ą B

is valid iff its immediate

subderivation

A
...
B

is valid. Moreover, both Ą and applications of E-rules can already occur in the

derivation of B from A.45

This circularity is solved, at least in logic, with an inductive definition of valid derivations. So,
in order to avoid circularity, we skip from a local definition of valid derivation to a global one, which
has as a conceptual consequence a definition of valid inference rule. This unfolding of the notion of
valid derivation is made precise by a definition of canonical proof, that is the starting point to define
validity.46

There is also another reason why we should consider a definition of valid derivation more primitive
than that of valid inference rule. Our justification of inference rules by harmony is based on the
meaning of logical constants, but we already stated that sentences have priority over terms in proof-
theoretic semantics. An inference rule alone can only partially explain the meaning of a sentence, and
its application in real inferences has to be investigated. So a definition of validity that uses sentences
and meaning-conferring derivations for sentences is warmly welcomed.

The term ‘canonical proof’ is coined in [Dummett, 1978a], but the idea that valid closed derivations
that end with an application of an I-rule have a key role in the definition of validity is already
established in [Prawitz, 1973]. Prawitz adopts this terminology in [Prawitz, 1974].

[Dummett, 1991] proposes a composite definition of canonical proof, since it distinguishes between
a canonical proof for a system in which I-rules do not discharge assumptions and canonical proofs in
general. In the first case, a derivation is canonical if and only if it has only atomic assumptions and
it is built up using only I-rules.47 In the second case, we have to generalize this definition:48

“Hence, when the canonical argument involves an appeal to introduction rules that dis-
charge one of the hypotheses of their premiss or premisses, we cannot place any restriction
on the forms of the rules of inference appealed to in subordinate deductions.”

Prawitz instead proposes directly this generalization, and we behave in the same way. So our
formal definition is:

Definition 1.2.6 (Canonical derivation (Prawitz-Dummett)). A canonical derivation for a non-atomic
sentence is a closed derivation that ends with an application of an introduction rule and such that it
has only valid immediate subderivations.

Since I-rules are meaning-conferring, a canonical derivation is valid by definition. In order to
obtain a general definition of validity, now we need to:

• Define the validity of open derivations using the validity of closed derivations;

• Define the validity of non-canonical closed derivations using canonical derivations.

The two main inductive steps of the definition of validity take care of these issues. But before seeing
this, we need a further definition:

45chapter 11 of [Gentzen, 1969a] 11 and [Prawitz, 1971] p. 285.
46The problem of circularity is much harder to solve for intuitionism tout court (as opposed to the purely logical part

of this doctrine), from which (via its BHK interpretation) IĄ is taken. In this case, the notion of canonical proof is
not so friendly since there is no guarantee for a well-ordering of canonical proofs for mathematical (intuitionist) results.
So the purely formal nature of logic is heavily applied here. This observation is related to one of Shapiro’s criticisms of
Tennant’s proof-theoretical logicism ([Shapiro, 1998b], p. 613), but it is essentially a consequence of the old problem of
purity of methods. See also [Dummett, 2000], p. 269-274.

47[Dummett, 1991] p. 254
48[Dummett, 1991], p. 260.
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Definition 1.2.7 (Atomic Base). An atomic base B is a set of rules (called ‘atomic rules’) that apply
to atomic sentences and have atomic sentences as conclusions.49

An atomic rule can discharge an assumption, and there is no assumption of consistency for atomic
bases, that is an atomic base B can authorise a closed derivation of K. We have a definition of validity
with respect to an atomic base, and then a generalization that gives validity tout court. This detour
is necessary because we need atomic bases in order to close open derivations:50

Definition 1.2.8 (Validity in B (Prawitz)). A derivation D is valid in B iff either:

1. D is a closed derivation of an atomic conclusion C and it can be reduced by normalization to a
closed proof of the same conclusion C carried on in B; or

2. D is a closed derivation of a non-atomic conclusion C and it can be reduced by normalization
to a canonical proof of the same conclusion C; or51

3. D is an open derivation and every closure of D, obtained by replacing open assumptions by
closed derivations for the same sentences that are valid in B, is valid in B.

Definition 1.2.9 (Validity (Prawitz)). A derivation is valid iff it is valid with respect to each atomic
base B.

So the validity of an open derivation is defined by the validity of its closure. But the availability
of closures is not enough: we need closures made with canonical proofs. Indeed, let us consider an
application of E^, and let us try to prove that it is a valid open derivation. In order to do this we
have to prove that all its closures made with valid proofs are valid, but if we just pick

D
...

A^B
^E

A

we do not know how to rewrite this proof in a canonical form, also accepting validity of the derivation
D of A^B and the fact that it is closed. That is we have to assume:

Assumption 1.2.1 (Fundamental assumption (Prawitz)). For every valid closed derivation of B
non-atomic, there is a canonical derivation with the same conclusion that can be found by reduction.

This assumption is a theorem for valid closed derivations in NJ, that is without atomic bases.
Indeed a closed derivation in normal form always ends with an introduction rule, if there is no ap-
plication of atomic rules.52 Nonetheless, we need to assume this property also for closed derivations
that use atomic rules, because these are needed to close open derivations.53 This assumption is the
reason why we can accept the second clause of the definition of validity in B. Without this, there is
no warrant that to every closed derivation corresponds a canonical one.

Now, since we have a closed derivation of A^B, we have a canonical derivation for it that can be
found by reduction (2), that is a closed derivation (valid in B) that ends with an introduction rule:

D1

...
A

D2

...
B

^I
A^B

^E
A

49We do not need to speak of non-logical constants since we do not consider quantification.
50 Prawitz proposes two generalizations of this notion: validity with respect to an atomic base and a set of reduction

steps (so that reduction steps are not decided before the definition); strong validity that asks for strong normalization
property instead of just normalization. The first generalization is the main improvement of [Prawitz, 1973] compared
to [Prawitz, 1971], and poses the problem of completeness of a logical system: a proof system is complete if it is the
strongest system that derives only inference rules valid with respect to some set of reduction steps. Prawitz conjectured
that minimal logic is complete ([Prawitz, 1973], p. 246), but this is still an open problem. Even though this is a
very important generalization, we will not consider it, since it is irrelevant for the investigation we want to carry out.
Whereas, about the second proposal of generalization (strong validity), we will reject it, following a criticism already
stressed by [Schroeder-Heister, 2006]. Moreover, in our modification of Proof-theoretic semantics contained in chapter 2,
we will even propose a weakening of the definition of validity that goes in the opposite direction.

51In this case a canonical derivation asks for subderivations valid in B.
52 This is the reason why Schroeder-Heister speaks of it as a corollary of normalization in [Schroeder-Heister, 2006]

(p. 531), receiving some severe criticisms from Stephen Read: [Read, 2015], p. 146, note 17.
53Since in pure NJ, that is without atomic rules, we have closed derivations only for logical theorems.
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To prove that this derivation is valid we just have to apply a step of normalization and obtain:

D1

...
A

This is a valid derivation in B by assumption, and since it can be found by reduction from every
closure of the application of ^E, also these applications are valid in B. Nonetheless, we did not use
any assumption about B, so every example of ^E is a valid open derivation simpliciter.

In a similar way we can justify all the elimination rules, so we have that:

Theorem 1.2.2 (Soundness of NJM). Every derivation D in NJ in which there is no application of
ex falso quodlibet is valid.

Ex falso quodlibet is in some way problematic, and we will deal with it in section 1.2.3.

Autonomy, ineffectiveness and separability of logic

Since proof-theoretic semantics gives an explicit justification of E-rules by both harmony and def-
inition of validity, we may ask whether this justification automatically warrants autonomy as well,
ineffectiveness and separability of logic. In the first part of this chapter, when we were speaking
of inferentialism in general, we decided to accept these properties as extra requirements for a good
inferentialist theory of meaning.54 If these properties follow from harmony and validity, then we
can drop them as assumptions, since they become redundant. Unfortunately, this entailment does
not hold in general, or at least we do not have it as an established result.55 On the contrary, if we
only ask for Inversion Principle, we can find acceptable rules that do not respect separability, as we
will see. Regarding the rules that suit Inversion Principle and violate ineffectiveness, the topic is
more complex, also because we saw that this principle is not uncontroversial. As we have already
seen Read’s constant ‚ can be rejected since ‚I violates non-circularity requirement, but we still have
some examples of rules of this kind. They are not logical rules, but together with logical rules they
cause lost of ineffectiveness: we have already seen Prawitz’s λ-rules and in this section we will see
truth predicate and Peano’s function ‘?’. In order to check whether the full requirement of harmony
(normalization) solves also these problems, we would probably need a generalization of the notion of
maximal sequence. For now, we are happy with a specific approach for every single counterexample.

As a first step, we will analyse autonomy, ineffectiveness and separability for the logical system we
are interested in, and we will also reject some violations of the ineffectiveness of logic using harmony.
In the absence of a general result, we will follow this strategy for the rest of the thesis. Later, we will
deal with some alleged counterexample to these properties.

Autonomy of logic For NJ we have a property that is also stronger than that required from
definition 1.1.11, since it holds:56

Theorem 1.2.3 (Subformula property for NJ). Every formula occurring in a normal derivation D
in NJ of C from Γ is a subformula of C of or some sentence in Γ.

Together with theorem 1.2.1, we have that the only (logical and non-logical) vocabulary needed
to prove a logical consequence of C from Γ is the vocabulary already used in C or Γ. Of course, when
we extend NJ with non-logical rules we have to check whether autonomy is preserved or not.

Ineffectiveness of logic From theorem 1.2.3 it follows that we can not prove A $ B in NJ if A
and B are atomic and different each other (and A ‰ K), since it would be provable in NJ using only
subsentences of A and B, and we do not have rules that go from atoms to atoms. This almost amount
to ineffectiveness, indeed we will see that the only exceptions to this principle are very tricky.

A concrete example of violation of the ineffectiveness of logic that is rejected by proof-theoretic
semantics is tonk. We already saw why we want to reject it, now we see how harmony can make this
rejection non ad hoc, just by showing the non-normalizable derivation:

A
tonkI

AtonkB
tonkE

B
ù ???

54The only requirement that we concluded was controversial, and so acceptable only prima facie, was ineffectiveness;
indeed, in this section, we will see other reasons to doubts about its full validity.

55Cozzo identifies the same problem: [Cozzo, 2008b], p. 312.
56[Prawitz, 1965], p. 53.
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It is quite obvious that we can not normalize this derivation. Indeed, to normalize this derivation there
has to be a reduction step for this kind of maximal formulae, and so when A and B are atomic we
need a derivation A $ B in NJ. So in order to extend it with rules that violate ineffectiveness of logic
and that are harmonious, NJ must already violate ineffectiveness, and we know from theorem 1.2.3
that it does not. So tonk-rules are not harmonious and they must be rejected.

Separability Still from theorem 1.2.3 and by the form of the rules, we have weak separability for
NJ (definition 1.1.10). We also have a stronger property for this logical system: to prove a logical
consequence A $ B we only need to use the rules for the logical constants that occur in A and B.
That is we also have strong separability.

The best way to prove separability is to use conservative extension:

Definition 1.2.10 (Conservative extension). Let S and S 1 be two logics expressed in the languages
L and L1, respectively, where b R L and L1 “ LYb. S 1 is a conservative extension of S iff

• S 1 extends S, that is if Γ $S C then Γ $S1 C;

• if Γ $S1 C, C P L and for every γ P Γ γ P L, then Γ $S C.

That is S 1 is a conservative extension of S iff it extends the language of S and it extends its valid
derivations but only with derivations in which the new elements of the language occur in the assump-
tions or in the conclusion.

Conservative extension is a very powerful method for proving separability, and we will make
extensive use of it. With NJ this application is quite obvious since its rules are atomistic. Let
us abbreviate with Sb...m the logic that we obtain from S‘...ab...m by removing the rules for the
connectives ‘ . . .a. That is Sb...m is the sublogic of S formulated using only the rules for b, . . . ,m.
Then we have:

Theorem 1.2.4. For every logical constants ‘, . . . ,a,b, . . . ,m in the language of NJ, every extension
of NJ‘...a with the rules for b, . . . ,m is conservative.

Proof. The fact that NJ‘...ab...m is an extension of NJ‘...a is trivial, so let us consider just conserva-
tiveness. If Γ $NJ‘...a C and none of b, . . . ,m occurs in Γ or in C, let us consider a normal derivation
D for this consequence. For this derivation, theorem 1.2.3 holds, so none of b, . . . ,m occurs in any
of its sentence, since none of them occurs in Γ or in C. Now, every E-rule for one of these constants
needs a sentence as a premise in which one of b, . . . ,m occurs, so if it were applied in D we would
have one of these sentences in it. Similarly, if an I-rule for one of these constants were applied in D
then we would have one of b, . . . ,m in the conclusion, and so in one of the sentences of the derivation.
So there is no application of the rules for b, . . . ,m in D and these rules are useless for establishing
this consequence, that is the extension is conservative.

So we have strong separability for NJ.

Why we can not establish separability in general? And ineffectiveness? We could think
that separability follows generally from harmony and maybe that also the converse is true: every
conservative extension can be formalised using harmonious rules. Unfortunately, the relations between
these properties are not so simple.

First of all, conservativeness is not enough to establish harmony of the base system or of the
extension. Indeed we have non-harmonious systems that are extended conservatively by both har-
monious and non-harmonious sets of rules. As an example, the system obtained by adding to the
purely implicational fragment of NJ the rules for tonk is conservatively extended by every set of rules
(both harmonious and non-harmonious), since it proves every well-formed formula. Another example
of rules that probably are not harmonious but that nonetheless conservatively extend a base system
is given by the classical rules for negation, which indeed are conservative over the ^_-fragment of in-
tuitionistic logic (or classical logic, that is the same). Probably there is no harmonious formulation of
classical rules for negation in the standard framework of proof-theoretic semantics (we will see this in
the next chapter), but nonetheless ^-rules and _-rules are complete for the ^_-fragment of classical
logic, and so classical rules for negations are conservative over them.57 About the other direction of
the entailment, that is whether harmonious sets of rules always extend harmonious base systems, the
issue is less obvious.

57[Steinberger, 2013], p. 82.
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First of all, we can acknowledge that also this question has a negative answer if we use Inversion
Principle instead of the full requirement of harmony. Indeed, already Dummett found rules that suit
this principle but do not warrant conservativeness, like quantum disjunction.58 This connective –
that we will represent using \ – has the same introduction rule of standard disjunction, but an E-rule
that can be applied only to sub-derivations that have only the disjuncts as open assumptions. Using
sequent notation for clarity, the elimination rule for \ is:

Γ $ A\B A $ C B $ C
\E

Γ $ C

A logic that has only standard ^-rules and \-rules is harmonious.59 Nonetheless its extension with
the (harmonious) rules for standard disjunction is not conservative. Indeed the following derivation
can not be normalized:60

pA\Bq ^ C
^E

A\B

rAs1
_I

A_B

rBs1
_I

A_B
\E1

A_B

rAs2
pA\Bq ^ C

^E
C

^I
A^ C

\I
pA^ Cq \ pB ^ Cq

rBs2
pA\Bq ^ C

^E
C

^I
B ^ C

\I
pA^ Cq \ pB ^ Cq

_E2
pA^ Cq \ pB ^ Cq

Moreover, we can reject this entailment also substituting the ask for harmony with the ask for
normalization tout court. Indeed Prawitz proved that the disjunction-free fragment of NK is normal-
izable,61 but, nonetheless, it is a non-conservative extension of the disjunction-free positive fragment
of NJ, since for example Peirce’s law is provable only in NK but it can be formalized using just
implication. Of course, this counterexample can not be used for our definition of harmony, since
we imposed that every logical rule is an introduction or an elimination rule, while Prawitz’s rule of
classical reductio does not suit this division.

We decided to consider harmony as a general property of the logic, that gathers both Inversion
Principle and normalizability, so none of the counterexample seen applies directly to it. Indeed, the
logic containing ^-rules, \-rules and _-rules is not harmonious, even though the logic containing only
^-rules and \-rules is harmonious and the logic containing only _-rules is harmonious. So we do not
have a harmonious extension, and the violation of conservativeness is useless. On the other side, NK
is not acceptable, as we already stressed, so there is no question of conservativeness. In conclusion, in
our case, we just do not have real proof of the entailment, but we can be optimistic about its validity.
Nonetheless, since we do not have real proof of it, we will continue to prove both harmony (defined
as Inversion Principle plus normalization) and separability of our logical systems.

Let us now consider the ineffectiveness of logic. First of all, we can easily see that Inversion
Principle is not enough to guarantee ineffectiveness of logic. Indeed, we have already seen that
Prawitz’s λ-rules suit Inversion Principle but leads to triviality, if added to NJ. In the previous
section we used this result to argue that some pairs of rules that suit this restriction manifest an
unacceptable behaviour, and so to skip to a more refined notion of harmony. The same example can
be used to prove that Inversion Principle does not prevent violations of ineffectiveness of logic. Indeed,
in order to prove K we need to use both λ and Ą-rules. So extending a base set theory composed of
λ-rules with standard rules for the conditional we obtain a non-conservative extension. As a result,
we have an application of logic that suits Inversion Principle and that is not innocent.

The complete criterion of harmony answers to this counterexample. Indeed, in order to prove K
we need to pass through a maximal formula that is both conclusion of I Ą and major premise of
E Ą, and this maximal formula can not be removed. As a result, the system that includes λ-rules
and Ą-rules is not in harmony, so it is not acceptable and it does not work as a counterexample to
the entailment from harmony to conservativeness.

58[Dummett, 1991] p. 288.
59A logic that has also standard Ą-rules suits Inversion Principle, but nonetheless it is not harmonious. Indeed

permutative conversions for standard disjunction do not hold for quantum disjunction if there is implication ([Francez,
2017b]), and some derivations do not have a normal form. As an example, let us consider this derivation:

pA\Bq ^ C

pA\Bq ^ C
^E

A\B

rAs3
rpA\Bq ^ Cs1

^E
C

^I
A^ C

\I
pA^ Cq \ pB ^ Cq

ĄI1
pA\Bq ^ C Ą pA^ Cq \ pB ^ Cq

rBs3
rpA\Bq ^ Cs2

^E
C

^I
B ^ C

\I
pA^ Cq \ pB ^ Cq

ĄI2
pA\Bq ^ C Ą pA^ Cq \ pB ^ Cq

\E3
pA\Bq ^ C Ą pA^ Cq \ pB ^ Cq

ĄE
pA^ Cq \ pB ^ Cq

It can not be normalized, since from pA\Bq ^ C we can not derive pA^ Cq \ pB ^ Cq without using Ą.
60[Dummett, 1991] p. 288.
61[Prawitz, 1965], chapter III.
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Looking at the history of logic we can find some other good candidates for a rejection of ineffec-
tiveness of logic. As an example, let us consider the liar’s sentence:

This sentence is false

As it is well known, the assumption that this sentence is true entails that it is false, while the
assumption that it is false entails that it is true. That is this sentence is paradoxical. So if in a
standard logical system we are able to formalize this sentence, then the system itself is contradictory.

Tarski uses this example to prove that all the languages that allow self-reference and contain a
truth predicate that can be applied to every sentence (semantic closure) and the standard rules for
negation are incoherent.62 It is generally agreed that this consequence can be avoided by weakening
the logical system that we use, and especially by weakening the rules for negation.63 The traditional
proposal is to use non-bivalent logics, like Strong Kleene logic.64 Nonetheless, Priest raised some
philosophical objections to these solutions, and proposed to accept incoherence as an acceptable
property of a language but to reject ex falso quodlibet as an invalid law.65 Apart from the details,
what is important for our issue here is that logic does not seem to be an innocuous supplement to a
theory of truth.

The standard position in proof-theoretic semantics is that we do not want liar’s paradox and so
our harmony criterion should exclude theories of truth and logics that together enable its derivation.
Indeed, in this framework, the possibility of developing these kinds of paradoxes is usually considered
as a piece of evidence that something in our everyday language is erroneous, and we will follow this
approach.66 After evaluating this issue we will consider other, more controversial consequences of the
combination of logic and theory of truth.

Harmony could exclude liar’s paradox in two different ways: by restricting only the range of
acceptable logics or by restricting also the range of acceptable theories of truth. Technically speaking
the issue of ineffectiveness of logic deals only with the first kind of solutions, that is we need logic to
be conservative over every kind of theories in order to have ineffectiveness. Nonetheless, we already
expressed our doubts about such a strong requirement, so we will consider both alternatives.

As a matter of fact, we do not know precisely how to extend harmony to non-logical fragments of
the language. Nonetheless, there seems to be a straightforward application of Inversion Principle to
truth predicate. Indeed let us consider the following pair of rules:67

A
T I

T pxAyq
T pxAyq

T E
A

Whether we impose some restrictions on their applicability, or we accept them in their full generality,
this pair of rules seems to suit perfectly Inversion Principle. Of course, we just need to pair a
restriction imposed to the I-rule with the equivalent restriction for the E-rule. Nonetheless at least
the fully unrestricted version of these rules seems to lead to paradoxes. So it seems that inversion is not
a good criterion for excluding dangerous versions of the truth predicate. Anyway, we are neglecting
an essential part of Tarski’s receipt for the paradox: a quotation device capable of modelling self-
reference.68 Steinberger correctly pointed out that the possibility of developing such a theory following
the restrictions of harmony is not obvious, so we have to investigate these issues in formal frameworks
like Peano Arithmetic (PA) in which we can settle the question about self-reference.69

Anyway, at least for the Inversion Principle, we can give another counterexample that shows its
inability to preventing ineffectiveness of logic.70 Indeed, let us consider the following rules:

62 To be precise, in order to be coherent it has to be a completely positive logic, that is it can not have implication
either, since Curry’s paradox can be formulated without negation: given the sentence “T ppq Ą ϕ” named p, we can
derive the truth of ϕ both from truth and falseness of p.

63This is an oversimplified presentation since, as we just remembered in note 62, there are paradoxes that do not use
negation. A revision of the rules for implication is needed as well.

64see chapter 9 of [Horsten, 2011].
65[Priest, 2006], pp. 12-16. Some other recent proposals to reject Contraction rule in order to fix the problem go in

the same direction too: [Hjortland and Standefer, 2018], p. 127.
66“r. . .s as Tarski observed, we cannot prevent the semantic paradoxes from arising in our language as we have it: our

linguistic practice is thus not perfectly coherent. We have, therefore, just as Frege believed for quite different reasons,
to tidy up the language somewhat before we can begin to construct a systematic account of the way it functions r. . .s”
[Dummett, 1991], p. 67. The only well-known exception is Stephen Read, that as we already saw proposes ‚ as a
proof-theoretic acceptable version of the liar’s paradox.

67[Shapiro, 1998a], p. 616. The author imposes also some restrictions that we will discuss later. See also [Read, 2000],
p. 127.

68As a matter of fact, Quine showed that self-reference is not indispensable in order to have the paradox, since we
can use ‘Yields a falsehood when appended to its own quotation’ that gives a paradox when you put it down twice and
apply quotation marks on its first occurrence; see [Quine, 1976c]. Nonetheless, quotation is still indispensable.

69[Steinberger, 2011a], p. 636.
70For an extensive discussion, see [Ceragioli, 2019].
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pa` cq{pb` dq “ e{f
?I

pa{bq?pc{dq “ e{f

pa{bq?pc{dq “ e{f
?E

pa` cq{pb` dq “ e{f

This strange operation has been pointed out for the first time by Giuseppe Peano, obviously not
in relation to Prawitz’s work.71 When introduced in very weak fragments of arithmetic, ?-rules allow
the derivation of ‘concrete’ examples of absurdity, like 1` 1 “ 1. Indeed it is enough to have the rules
for identity and for addiction between natural numbers to obtain:

p1` 1q{p2` 3q “ 2{5
?I

p1{2q?p1{3q “ 2{5 1{2 “ 2{4
Sub. of Id.

p2{4q?p1{3q “ 2{5
?E

p2` 1q{p4` 3q “ 2{5
Add.

3{7 “ 2{5

Of course the conclusion of this derivation is blatantly false, since it is equivalent with 3ˆ 5 “ 2ˆ 7,
that is 15 “ 14. From this result it is easy to derive 1 “ 0, which is the gate of all arithmetical
absurdities.

It should be possible to give a reformulation that suits Inversion Principle of all the rules used
in this derivation. Indeed the only controversial part can be the application of this principle to
subsentential elements of the language, like fractions and sums. Nonetheless, also the truth predicate
is a subsentential element, so this application is not more controversial than it. And the one based
on the truth predicate is a well-established counterexample in proof-theoretic semantics since, as we
saw, it is discussed by Prawitz, Read, Steinberger and Tennant inter alia. Answered this criticism,
the hardest part is given by rules for identity, but we can luckily rely on a work of Read for this.72

Let us now consider a negation-free version of this small fragment of PA. It manages to prove false
statements like 1`1 “ 1 but not K, while its extension with  -rules enables the derivation of K as well.
So we have a non-conservative extension. Of course, if we have also some non-arithmetical vocabulary
in our basic theory the non-conservativeness is also more important, since we can derive K using
1 ` 1 “ 1 and then use ex falso quodlibet to derive every kind of sentences. In conclusion, Inversion
Principle is not capable of preventing effectiveness of logic, whenever the previous counterexample
based on the truth predicate is sound or not.

It is interesting to notice that ?I suits both our criterion of non-circularity, and Dummett’s criterion
of complexity. At least it suits what is arguably a good extension of Dummett’s criterion to the non-
logical fragment of the language. Indeed, its conclusion is neither more complex than its premise,
nor less complex than it – in contrast with what happens with the already seen application of Dag
Prawitz’s λI, that is disqualified by Dummett’s condition – and it seems plausible that this is all we
can ask for a rule about non-logical terms.

Let us now return to the problem of developing a complete base system that suits Inversion
Principle and that is extended non-conservatively by the truth predicate. We argued that it is better
to address this issue in PA, and this raises also a further question: the possibility of developing a non-
conservative but nonetheless coherent extension of PA with the truth predicate. Indeed we already
stressed that eventual extra requirements to T -rules are not problematic. Of course it is well known
that we have a quotation operator built in PA, that is arithmetization. Nonetheless, we still have two
points to solve:

• We have to prove that there is a formulation of PA that suits Inversion Principle, and this is
problematic especially for the induction schema;73

• In order to have a non-conservative extension we need to extend also the induction schema with
occurrences for the truth predicate.

Of course, the second problem greatly depends on the first one.74 The kind of non-conservativeness
that we obtain (whether it is coherent or incoherent, etc) depends both on eventual restrictions
imposed on the applicability of the T -rules, and on the logical system that we use.

71[Peano, 1921].
72[Read, 2004]
73[Shapiro, 1998a] can overlook this problem since he is working under the hypothesis ad absurdum that arithmetic

is part of logic and can be formulated using harmonious rules.
74Steinberger on the other side argues that also this extension of the Induction Schema is not sufficient to have non-

conservativeness, since we need a full, compositional theory of truth and so a further extension ([Steinberger, 2011a],
p. 635). However, I think that his reasons to believe this are not very strong since, while it is surely true that in
an axiomatic theory of truth we should explicitly postulate the compositionality of truth predicate (See chapter 6 of
[Horsten, 2011]), it is not so obvious that we are forced to do the same in a theory based on natural deduction.
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Arguably, the step from a formalization of PA that suits inversion to a fully harmonious one is
short. Anyway, while we could believe that Inversion Principle is too weak to prevent pathological
applications of the truth predicate, the complete criterion of harmony could be more effective to
exclude them. At least this seems to be Prawitz’s hope when he considers other paradoxical cases like
that caused by λ-rules. Nonetheless, we already saw that the normalizability requirement alone is not
enough to guarantee conservativeness, since Prawitz’s version of classical logic without disjunction is
normalizable but its rules for negation are necessary to prove Peirce’s law, and also ineffectiveness is
essentially a matter of conservativeness, so maybe our hope is misguided. Lacking a good argument
for one or the other answer, we can only report what is the common belief.

Prawitz firmly believe that the truth predicate should not be conservative over arithmetic, and
so that harmony should not require conservativeness.75 In other words, he rejects both the thesis of
ineffectiveness of logic and that of deflationism regarding the truth predicate.76 Nonetheless, Prawitz
accepts only some kinds of non-conservativeness regarding the theories of truth. He does not seem
to be in favour of a proof-theoretically acceptable version of liar’s paradox, as opposed to Read,
although he does not impose ineffectiveness of logic or coherence as extra requirements. As a matter
of fact, apart from questions of coherence, conservative extension (that is necessary for ineffectiveness
of logic) is never a desideratum nor a usual result in Prawitz. We already saw that Inversion Principle
is useless to discriminate between acceptable and unacceptable theories of truth, so he can only rely
on normalizability for this purpose. Anyway, the existence of such a consequence of this property
should be clearly exposed.77

So in conclusion maybe harmony entails the coherence of the system, but there are good reasons
to believe that it does not entail ineffectiveness of logic. So if we want this property (and it is a
controversial choice, since we saw that both Dummett and Prawitz rejected it) we need to assume it
as an extra property.

1.2.3 Absurd and ex falso quodlibet

Prawitz proposes a clear justification of minimal logic since it is characterised by harmonious rules
that produce valid derivations. Nonetheless, the extension with ex falso quodlibet in order to obtain
intuitionistic logic is problematic. Indeed in [Prawitz, 1965] this rule does not enter in the standard
distinction between introduction and elimination rules, although it does not cause problems with
normalization. Efq causes problems also to the definition of validity, due to the presence of non-
consistent atomic basis. Let us consider these two problems separately.

Harmony of Efq

Technically speaking someone could think that harmony is not such a big problem for Efq, since we
defined it using normalization and not directly using Inversion Principle. Indeed it seems that, since
Efq is neither an I-rule, nor an E-rule in Prawitz’s analysis, it can not give rise to maximal formulae
by definition. If we accept this position, all we have to show is that it does not disturb normalization
regarding the other rules. This seems to be the idea behind Prawitz’s treatment of this rule in [Prawitz,
1965], where he proves normalization for the complete system of intuitionistic logic, and so that Efq
does not cause any loss of harmony. But of course this solution would be improper: when we impose
normalization we assume that every rule has to be considered as an I or an E-rule, otherwise the
requirement loses its raison d’être. Also, Dummett is very clear when he stresses that harmony should
be a requirement for the entire language, not only for logic.78 Under these circumstances, it seems
reasonable to consider Efq as an E-rule.

If we accept the label KE for Efq, that is we decide to consider it an elimination rule, then we have
to justify it. The obvious problem is that there seems to be no introduction rule for K, so no chance
of justification via Inversion Principle. Nonetheless there are three suggested solutions:

Dummett KI has the form
b1 b2 . . .

KI
K

where the bi run through all the atomic sentences

of the language;79

75[Prawitz, 1994] and [Prawitz, 1985] p. 166.
76See chapters 5, 7 and 10 of [Horsten, 2011] for an exposition of the traditional relation between conservativeness

and deflationism and some proposals of alternative approaches.
77Of course, I am not negating that we can apply normalization theorem to prove coherence in some contexts. Some

similar applications are well known and completely valid. Nonetheless, we do not have a general warrant that this is
always possible.

78[Dummett, 1991], p. 287.
79[Dummett, 1991], p. 295.
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Read KE is justified by the absence of an introduction rule for K;80

Milne KI is a non-logical and non-formal rule that depends on the context, like
0 “ 1

KI
K

.81

The first two solutions consider K as a logical constant, while the last one relegates it to the non-
logical vocabulary. If we accept the first formulation of KI it is clear that Inversion Principle holds.
Indeed we have the following kind of maximal formulae and reduction step:

...
b1

...
b2 . . .

KI
K

KE
bi

ù
...
bi

Nonetheless, this kind of solution has a big disadvantage: the meaning of K is not independent on
the non-logical fragment of the language. Indeed, since we treat it as a kind of conjunction of all the
atoms, if we change the class of atoms then we change its meaning. So it seems that the meaning of
K is not fixed for every language, and it can change in different contexts. Dummett speaks on this
regard of a lack of ‘invariance’ of K.82

Also, nothing says that K has to be false, that is that there can not be a valid derivation for it
from correctly asserted assumptions, as observed by Nils Kürbis.83 Indeed let us assume that KE and
the first version of KI were enough to define absurdity. Let us now consider the following scenario:
in our pre-logical language every atomic sentence is true. If we do not need pre-logical knowledge
to understand absurdity, the meaning of K should be unaltered in this case. But to accept this, we
have to reject the idea that absurdity must be false, since it is tantamount to the conjunction of all
atomic sentences, which is a true sentence in our toy-language. Indeed, if it were not for non-formal
contradictions like ‘this is a completely red and completely green coloured spot’ or ‘this body is heavy
and light’, or at least factually false sentences like ‘the Moon is made of cheese’, what problems there
would be in accepting K in our beliefs? According to Kürbis, from this observation we have to conclude
that the rules for K do not offer a complete characterization of the meaning of “absurd”. Kürbis seems
to say that the loss of invariance is enough to reject the idea that we can catch the meaning of K
using an inferentialist theory of meaning. Nonetheless I think, with Dummett, that all that we can
conclude from this observation is that a part of the meaning of absurdity does not pertain to logic.
[Dummett, 1991] indeed makes the same observation of Kürbis and concludes:84

“It is, however, important to observe that no appeal has been made to the principle of
consistency, and that the logical laws do not imply it. We may know our language to
be such that not every atomic statement can be true; but logic does not know that. As
far as it is concerned, they might form a consistent set, as they are assumed to do in
Wittgenstein’s Tractatus. The principle of consistency is not a logical principle: logic does
not require it, and no logical laws could be framed that would entail it.”

So, far from being a problem of proof-theoretic semantics, this situation seems to be a well-known
aspect of this theory, in line with some positions regarding logic. Of course, philosophers who do not
share this position see it as a problem, but this holds for every philosophical implication of proof-
theoretic semantics.

The second solution, proposed by Stephen Read solves at least the problem of invariance of K. The
idea naturally arises from a reformulation of Inversion Principle proposed by the author, according to
which E-rules are obtained as results of the application of a function to a set of I-rules. Nonetheless,
I think that this proposal has nothing to say about falseness of K, for which we have to accept
Dummett’s position.

The third alternative accepts in some way both Dummett’s observation about the lack of invari-
ance of K and the conclusion, derivable from Kürbis’s observation, that its meaning comes from the

80[Read, 2000], p. 139. To be precise, this justification was already present in [Cozzo, 1994b] (p. 110) and the author
admits that he heard Prawitz suggesting this idea during the 1980s.

81[Milne, 1994], p. 64.
82[Dummett, 1991], p. 296. Of course, the same lack applies to negation since its meaning depends on that of

absurdity. We could even observe this phenomenon directly for negation, by the rule (see [Milne, 1994], p. 81):
A

...

b1

A

...

b2 . . .
 I

 A

Nonetheless I think that using K severs more clearly logical and non-logical aspects of the

meaning.
83[Kürbis, 2015a] and [Kürbis, 2015b].
84P. 295.

26



non-logical territory. We could say that while Dummett’s solution isolates only the logical part of
the meaning of K, Milne’s solution accepts a completely non-logical meaning-conferring rule for this
constant, leaving in some way open the question of the logical status of KE.

There have been a lot of logical investigations regarding the harmony of rules for absurdity, but
I think it would be better to focus mainly on the validity of these rules, since this topic could shed
some light also on harmony.

Validity of Efq

First of all, let us just remember that there is no assumption of consistency for atomic bases B. That
is in some bases B we have a derivation of K. This poses some problems for validity of KE, indeed
since it is an open derivation, it is valid in a basis B iff all of its closures with valid derivations are
valid in B (clause 3 of definition 1.2.8). As Prawitz observes, KE is vacuously valid with respect
to consistent bases B – that is bases that do not derive K –, since there are not closures for this
derivation according to them.85 Nonetheless, we have some problems with inconsistent logical bases.
Indeed consider one such basis B; by the definition of inconsistency, we have a valid in B closure for
K. Now, KE is a valid in B open derivation iff, its closures with valid in B derivations are valid in B,
and it is not obvious that this is the case. Given an atomic valid in B derivation D of K, the closed
derivation

D
K

KE p

is valid iff there is a closed derivation of p that can be carried on in B (clause 1 of 1.2.8). The problem
is that KE is not part of the atomic rules, so this derivation itself is not carried on in B and is not
acceptable for this justificatory purpose. As a consequence, this derivation is justified if and only if
there is a reduction of it that does not use KE or other logical rules. Unfortunately, we do not have
any warrants that this reduction is possible in general. Indeed an atomic basis can be inconsistent
without having a closed derivation for every atomic sentence, or at least no such condition is imposed
on inconsistent bases. In conclusion, since logical validity is defined as validity in every atomic basis B
(1.2.9) and there are inconsistent atomic bases such that KE is not valid in them, KE is not logically
valid.

So KE gives problems because it wants to be a logical rule, but it has some kind of introduction
rule that is non-logical and that is given in some bases B. I think we can see Dummett’s solution and
Milne’s solution as opposite, since:

• The first proposes a logical rule for the introduction of K, and so decides to consider it as a
logical constant tout court ;

• The second proposes something like non-logical rules for the introduction of K, which depend on
the atomic basis B. According to this interpretation, Milne is nearer to Prawitz than Dummett.
I think that a logical conclusion of this position would be to consider also KE as a non-logical
rule, that is as a rule of B.

Read’s solution is in some way ineffective here, since the fact that we do not have logical rules for
introducing K is not enough to solve the problem of its validity when we accept inconsistent atomic
bases (although maybe it is enough just for harmony). Indeed, Read tells us that we can reject I-rules
for K and still have harmony for this constant. Nonetheless, we can see that inconsistent atomic bases
B and so non-logical I-rules for K are needed in order to reject unwanted open derivations.

What are Inconsistent bases needed for? We could think that it is not a good idea to deal
with inconsistent atomic bases in general, and that this is the reason why KE seems to be an invalid
open derivation. Unfortunately, this diagnosis can not be correct, since we need this kind of bases to
reject some invalid derivations.

Let us consider the following open derivation:

 p
q _ r

We assume that p, q and r are atomic. It seems obvious that we want to reject this derivation as
invalid but, in order to do this, we need to have a closed derivation for  p in an atomic basis B.
Indeed if there is no atomic basis B that warrants  p, then the derivation is vacuously valid (as KE

85[Prawitz, 1973], p. 243.
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with respect to consistent bases). So let us assume that we have a closed valid derivation D for  p
in B. Since  p is logically complex, if D is valid, then there is a canonical derivation D1 of  p that
ends with an application of  I. Its form has to be:

rps

...
K

 I  p

Let us keep in mind that this derivation has to be closed and let us consider the open sub-derivation
of K from p. We will see that it needs to be constructed using an inconsistent basis.

Of course, there is no closed derivation of K that uses only logical rules, and there is no closed
derivation of K that uses only logical rules and rules of consistent atomic bases. Indeed a consistent
basis allows only to close open atomic assumptions from a logical derivation, or to change their forms
or number. That is it contains rules of the form

rps
p

p q . . .
r

or that can be obtained by composition from these. And none of these operations is sufficient to derive
K, since there is no open derivation of it in NK (and NJ a fortiori) from atomic assumptions.86 From
this, it follows also that there are open derivations of K from atomic assumptions in NJ plus consistent
B neither. Indeed, from an open derivation of this kind we can find an open derivation in NJ of K
from (possibly different) atomic assumptions, just by dropping the applications of the rules in B.
Consequently, we need an inconsistent atomic basis in order to derive K from atomic assumptions,
and so we need it also to derive canonically  p. It is obvious that also in this basis there are not
reduction procedures that render normal the derivation

rps

...
K

 I  p
q _ r

Indeed we have a derivation of K in B and then no applications of E-rules but just an application of an
I-rule and a strange (evidently invalid) inference. So there are no maximal formulae, and the derivation
is ‘in normal form’. Nonetheless, it is blatantly not in canonical form, since the last application is not
an I-rule. In conclusion, since clause 2 of definition 1.2.8, this derivation is neither valid in B, nor
logically valid.

If we weaken the requirement of harmony asking only for the existence of normal form instead of
asking for normalization, this derivation is harder to reject. We have to ask that in some inconsistent
atomic base B such that p $BK, there are closed derivations neither for q nor for r. Maybe it would
just be better to assume that for every set of atoms, there is a class of bases that justify only the
closed derivations for each of them, and such that for every set of sets of atoms, there is a basis in this
class that derives K only from all the elements taken together of each of these sets of atoms. In this
way, given a set of atoms, we have every kind of atomic basis: we have every selection of true atoms
and every selection of inconsistent sets of atoms.

This requirement regarding the atomic bases seems to be in contradiction with Dummett’s rule.
Indeed, we just decided to accept I-rules for K that do not have all the atoms as premises. We could
still consider Dummett’s rule as the only canonical way of deriving K. In this case, it is important to
remember that fundamental assumption 1.2.1 holds only for closed derivations: we can have an open
derivation of a sentence, without also having a canonical derivation of it. Indeed let us consider the
derivation:

A^ pB _ Cq
^E

B _ C

It is obviously valid, since it is constituted by a single application of an E-rule. Nonetheless, there is
no chance of deriving it canonically, since A^ pB _ Cq * B and A^ pB _ Cq * C.

This remark is relevant here because without it we could think that, under the hypothesis that
Dummett’s rule is the meaning conferring rule for K, from

86This is obvious, since in a truth table we are free to consider true every selection of atomic sentences.
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rps

...
K

 I  p
q _ r

we could conclude the existence of the derivation:

rps b1 b2 . . .
KI

K
 I  p
q _ r

So, if we could apply the fundamental assumption, we would be sure that in such a derivation of K,
all bi apart from p were closed, as in the starting derivation.

This would not be an obstacle to reject the validity of the derivation  p $ q _ r, if we define
this notion using normalization, since there is no applicability of normalization to the tree just seen.
Nonetheless, if we weaken the definition, and ask only for the existence of normal form, then we would
have troubles, since we can find the normal derivation:

q
_I q _ r

Where q is an atom bi. And this justification would be available for every derivation that has the
negation of an atom as its only premise and such that the negated atom does not occur in the
conclusion.87 This disquisition is not just hypothetical since we will consider in later chapters this
kind of weakening of harmony. So this is another good reason to restrict the application of fundamental
assumption to closed derivations.

We could wonder how to apply a canonical derivation for K. That is: what does it mean to have
a closed derivation of it? Of course we need to have a derivation that has only closed assumptions, so
we need a set of rules in B that enable a derivation b1, . . . , bn $K plus a set of rules that discharge
the open assumptions b1, . . . , bn, directly or not. Since we said that B considers true those atoms
for which it gives closed derivations, we can apply the canonical derivation for K only in those basis
in which there is a set of inconsistent atoms that is a subset of the set of the true (according to B)
atoms. This phenomenon is quite strange and deserves some attention when we consider Dummett’s
proposal.88

Concluding remarks on Absurd

Let us now reconsider the three analyses of absurd sketched at the beginning of this section.
We have seen that Dummett’s proposal is more demanding than it looks since it uses a canonical

derivation for K that can be applied only in strange kinds of atomic bases. Apart from this it is a
coherent proposal and should be considered as a good way of saving the logical status of ex falso
quodlibet. Of course, we also have to neglect the strange problem of the lack of invariance of K.

Milne’s solution seems to be the most natural, if we look at the way in which consistency is dealt
with in the definition of validity. We just consider it as a notion that regards atomic bases and not
logic, and so downgrade ex falso quodlibet to a non-logical status. Of course, a natural consequence
of this position is that we should consider also incoherent bases in which ex falso quodlibet does not
hold.89 Whichever proposal we accept, we need to have a fully general notion of atomic bases in order
to reject unsound open derivations that start from negated atoms.

On the contrary, Read’s solution can not be accepted, since it is based on the absence of I-rules
for K, and this condition can not be preserved when we consider atomic bases in general. Should we
conclude that in these atomic bases KE does not hold? This is unacceptable, since logic should be
independent of the context. Also, the hypothesis of dropping inconsistent bases has to be rejected
too, as just shown.

87In this case, we tacitly assumed that q ‰ p or r ‰ p, nonetheless we can have the same problem also in some cases
in which the negated atom occurs in the conclusion. We choose the first situation since it is surely problematic, but we
can have good counterexamples also in the other case.

88Already the fact that a canonical derivation for  p has to derive K using only open assumptions of the form p
clashes with the idea behind Dummett’s rule. Nonetheless, we tried to save this rule by pairing it with non-canonical
derivations for K. I think that this reconstruction is the most favourable that we can furnish to Dummett’s rule.

89I want to specify for clarity that this conclusion is not explicitly stated by Milne, although it seems to follow from
its proposal.

29



Chapter 2

Changing Proof-Theoretic
Semantics

2.1 That’s all?

As we saw in the previous chapter, the rules for NJ suits the criteria imposed by proof-theoretic
semantics with the only possible exception of ex falso quodlibet. Of course, this system is complete
only for intuitionistic logic and this leads people to wonder whether it was possible to give a proof-
theoretically acceptable system also for this logic. This possibility was explicitly rejected by Prawitz,
who conjectured that minimal logic is the strongest system that is justified according to his definition
of validity.1 This conjecture wants to be fully general, that is for every different choice of I-rules and
of reduction procedures, the strongest logic acceptable is minimal. The status of the conjecture is
controversial: it seems to be false if stated for the entire language but arguably true for some of its
fragments, at least according to some authors.2

We will not consider this conjecture directly, but we will propose an overview of some alleged
solutions to save classical logic. After rejecting some proposals we will endorse a solution proposed by
Peter Milne and we will lead it into unexpected directions. In order to do this, we will evaluate some
starting points generally accepted in proof-theoretic semantics about the shape that an I-rule should
have.

2.2 Single-conclusion unilateral systems and their problems

Problems with the standard formulation The proposed solution that should save classical
logic with a very small departure from the standard approach of proof-theoretic semantics uses a
single-conclusion formulation and uses rules in which only one logical term occurs. With both these
restrictions, which NJ without ex falso quodlibet naturally suits, it is not easy to justify classical logic.

Prawitz’s original attempt to save classical logic extends NJ with an extra rule for K, but as we
already stressed it is not clear how to categorise it. The standard opinion today in proof-theoretic
semantics is that ex falso is an elimination rule, and we saw in section 1.2.3 that there are some
good attempts to justify it. Nonetheless, unfortunately, this categorization can not extend to classical
reductio, since there seems to be no justification procedure for it.

Prawitz considers both ex falso and classical reduction as external to the distinction between I and
E-rules, but we already acknowledged that this choice is not in line with the conception of meaning
developed in proof-theoretic semantics. Since there seems to be no clear justification of this rule but it
has to be accepted in the introduction/elimination distinction, Milne proposed that classical reductio
should be considered as an I-rule for A, instead of an E-rule for K. In this way, we could justify
A  A

K
as the respective E-rule (for A, not for  A).3 But to do this, it seems to be necessary

to reject compositionality of meaning, because to know a meaning-conferring rule for A, we should
have to know a more complex sentence, id est  A. Milne recognises this problem and proposes an
interesting answer.4 Let us consider these two rules:

1[Prawitz, 1973], p. 246.
2[Wansing, 2015], p. 19-20.
3[Milne, 1994], p. 58.
4[Milne, 1994], p. 60.
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rAs

...
K

cI
cA

A cA
cE

K

The intuitive idea is that cA is the contrary of A, so if A is the negated formula  F , cA stands for F
as much as for   F . Obviously, the objection of complexity can not be stated against these rules.

The problem with this proposal is that these rules do not manage to define classical negation
without some changes. In particular, we have to introduce in the theory the idea of cA as the classical
contrary of A. We can formalize this intuitive characterization using the pair of rules:

cp Aq
c E1

A

cp Aq
c E2

  A

But let us consider the following proof of Peirce’s law:

r pppA Ą Bq Ą Aq Ą Aqs4

r pppA Ą Bq Ą Aq Ą Aqs3
rAs1

ĄI
ppA Ą Bq Ą Aq Ą A

 E
K

cI
cp Bq

c E1
B

ĄI1
A Ą B rpA Ą Bq Ą As2

ĄE
A

ĄI2
ppA Ą Bq Ą Aq Ą A

 E
KcI3,4

cp pppA Ą Bq Ą Aq Ą Aqq
c E1

ppA Ą Bq Ą Aq Ą A

We can see that the role of this rule is not dissimilar to that of double-negation elimination, and it does
not seem easier to justify.5 It could also seem more natural to assume a double-contrary elimination
to have the same result. Milne writes that c should be a metalinguistic constant, so probably we
should not formulate Ec as rules, but in this case the inferential one is only a part of the complete
meaning of c. If this is acceptable in a proof-theoretic study of meaning, it shall be more simple to
admit that only the intuitionistic part of classical negation has an inferential meaning.6

Another, more interesting, answer given by Milne to the refusal of labelling classical reductio as
an introduction rule is that not every I-rule is meaning-conferring. If this were true, the classical
reductio violation of complexity constraint would be much less scandalous, because compositionality
could still work for meanings even though not for I-rules. To support this idea, he proves that the
meaning of negation can not be given only using I-rules, because it is impossible to obtain a proof
of a negative formula without assuming another negative formula.7 So in order to obtain something
negative, something else negative must be assumed. This is not so surprising if we consider that  
is introduced using K and this does not have an introduction rule. So, to understand  we need to
understand K, and the knowledge of this can not consist in the mastery of an introduction rule.8

The suggestion that the meaning of K is not completely given by logical rules is hardly resistible;
I think the only answer, if any, could be the one stressed by Stephen Read and already exposed
in section 1.2.3. Nonetheless, we already pointed out that Read’s proposal is not acceptable from
the point of view of validity. So it seems that we have to pick one of the following reading of this
phenomenon:

• Part of the meaning of absurdity (and as a consequence negation) can not be captured by an
inferentialist theory of meaning, as stressed by Nils Kürbis;

5Indeed another option to obtain classical logic is to assume also

rcAs

...

K

A

as a rule, but so we end up where we

started.
6Milne’s main reason to investigate c seems to be the observation that meaning-theoretic complexity and syntactic

complexity are not necessarily the same thing. As a consequence cA can be syntactically but not meaning-theoretically
more complex than A. I neglected this aspect of his proposal because, although reasonable from a general point of view,
it obviously clashes with our inferentialist framework.

7Recursive definition of negative formula is: K is negative; no other atomic sentence is negative; for all A,  A is
negative; A^B is negative iff A or B is; A_B is negative iff A and B are; A Ą B is negative iff B is; [Milne, 1994], p.
61.

8Milne suggests that it could consist in the mastery of something that is not (technically speaking) logical, like 1 “ 0.

31



• Part of the meaning of absurdity (and as a consequence negation) can be captured by an infer-
entialist theory of meaning, but is not part of its logical meaning, as stressed by Dummett.

In both cases, it seems that Milne’s observation forces us to admit that not always the entire
meaning of a logical term is completely given by its logical introduction rule. So, sometimes something
else must be used to characterise completely its meaning, and we are forced to – at least partially –
abandon autonomy principle or to reject ex falso as a logical rule. However, what Milne needs to show
in order to save the I-rule reading of classical reductio is that sometimes I-rules do not contribute at all
to the meaning of the principal term in the conclusion, but he shows only that sometimes it does not
manage to give it all. Indeed it is quite obvious that  I contributes to the meaning of intuitionistic
negation: at least in expressing its relationship with implication and absurdity.9 So classical reductio
should at least give a part of the meaning of the less complex conclusion, even if maybe not the
complete meaning. But if this is true, we still have the same problem: to understand the meaning of
a sentence A is to know all its meaning-conferring rules, and so to understand completely A we need
to understand  A.10

Moreover, Milne tries to use his observation to respond to Prawitz’s criticism that  should not
occur in a rule for absurdity like classical reductio. I think that Prawitz is worried by the possible
violation of what we called non-circularity requirement (definition 1.1.9), since if we interpret classical
reductio as an I-rule, the usage of  in a meaning-conferring rule for K is paired with the usage of K
in a meaning-conferring rule for  . If this is the point, Milne’s observation that purely logical I-rules
alone can not define the meaning of  is ineffective.

However, apart from technical reasons why some particular proposals fail, there are also general
problems for this kind of extensions of NJ. Indeed, one of the reasons why it is hard to justify
classical logic is that while intuitionistic rules for implication seem reasonable and complete, they are
not enough strong to derive Peirce’s law, which nonetheless is a classical law. For this reason, an
attempt to reconstruct classical logic by extending NJ with only rules for negation or absurdity is
unacceptable, due to our condition of separability. Of course, also Prawitz’s proposal is rejected by
this simple observation.11

General-introduction rules More recently, Milne has prosed another approach that deals consid-
erably well with the issue of separability. In [Milne, 2010] the author consider an intuitionistic system
in which both Ą and  are primitive. His reason for doing this is probably the lack of invariance of
K and as a consequence the lack of invariance of the negation if this is defined using that.12 Indeed,
already in [Milne, 1994] he dealt with this issue, and rejected

rAs

...
B ^ B
 A

because it is unable to characterise the meaning of  in an invariant way, since the occurrence of B
in it hide an implicit universal generalization, like in ex falso quodlibet. On the contrary, he opted for
the following, that does not have this problem:13

9To reject the ability of this rule to give meaning to  , we should reject also that minimal negation has a meaning
at all.

10Milne is right when he says that in classical logic sentences and their respective negations seem to be at the same
level, but it is not clear whether this intuition can be used in inferentialist theories of meaning. I do not think that
Milne’s proposal of operator c can work, as I have already said; we will later evaluate whether a bilateral theory of
speech acts like [Rumfitt, 2000] is more trustworthy.

11 Although his normalizability result for the disjunction-free fragment of this formulation of classical logic can be
extended to the entire language, as is shown in [Andou, 1995]. Indeed: first of all we defined harmony using both
normalizability and the Inversion Principle, and a positive answer to the first criterion alone is not enough; secondly
normalizability is not sufficient to state separability, as an example the proof already seen of Peirce’s law (formulated
using classical reductio instead of c´ rules) is in normal form but does not exhibit separability.

12We exposed this problem in section 1.2.3.
13Pp. 83-83. Or equivalently (p. 64)

rAs

...

 A
 A

that we will consider also later in this section.
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rAs

...
A^ A

 IMilne
 A

In his more recent article, he remains faithful to this line. Indeed he starts to consider Dummett’s
formulation of intuitionistic logic, that is composed by the standard rules for ^, _ and Ą extended
with

rAs

...
B

rAs

...
 B

 IDummett
 A

A  A
 EDummett

B

but immediately explains that the first rule can be split in the two rules14

rAs

...
 A

Weak I
 A

rAs

...
 B B

 Inversion
A

and later clarifies that the second one is redundant for intuitionistic logic (but not for minimal logic).15

Now, in order to formulate classical logic without losing separability, he changes both the rules for
implication and that for negation. First of all, he considers the extension of his system with16

r As

...
B

rAs

...
B

Dilemma
B

rA Ą Cs

...
B

rAs

...
B

Tarski
B

The problem with this system is that it is redundant since Tarki’s rule and Dilemma are derivable
one from the other. Indeed just one of them is enough to obtain classical logic from intuitionistic
logic, but dropping one of them leads to a lack of separability, whether because we need Tarki’s rule –
and so Ą – in order to derive the classically valid but intuitionistically invalid   A $ A, or because
we need Dilemma – and so  – in order to derive the classically valid but intuitionistically invalid
pA Ą Bq Ą A $ A. To solve this problem, Milne proposes the following two changes:17

• By dropping  IDummett, he blocks the derivation of Dilemma from Tarski;

• By substituting ĄI with
B

WeakĄI
A Ą B

, he blocks the derivation of Tarski from Dilemma.

At least from the point of view of separability, this system seems to work fine, but are these rules
acceptable as meaning-conferring rules? Milne justifies his choice asserting that18

“the orthodox formulation of an introduction rule presents certain grounds as sufficient for
inferring a formula with some connective dominant; if, instead of inferring that formula,
one has already used it as an assumption, then these grounds suffice to show that the
assumption is unnecessary, it can be discharged, for one has to hand all that is needed to
make do without it.”

This explanation of the strange shape of Dilemma and Tarski seems convincing in my opinion, but we
still need to consider harmony.

In [Milne, 2015] the author generalises this framework and deals also with harmony. This time
the idea is explicitly to rethink the role of introduction rules, using a new interpretation of Prawitz’s
Inversion Principle and the symmetrical version proposed by Negri and von Plato19. He then concludes
that

14[Milne, 2010], p. 179.
15[Milne, 2010], p. 188 note 12.
16Pp. 192,4. These are a generalization of the more common Peirce’s rule and of the reformulation of classical reductio

without K:

r As

...

A
classical reductioMilne

A

rA Ą Cs

...

A
Peirce

A
17[Milne, 2010], p. 196.
18[Milne, 2010], p. 197.
19[Negri and von Plato, 2001].
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“What is essential to an introduction rule is that it characterises conditions under which a
logically complex assumption is unnecessary and hence may be discharged without loss.”

As a consequence he changes all the introduction rules in what he calls their general-introduction
version:20

rA^Bs

...
C A B

^I
C

rA_Bs

...
C A

_I
C

rA_Bs

...
C B

_I
C

r As

...
B

rAs

...
B

Dilemma
B

rA Ą Bs

...
C

rAs

...
C

Tarski
C

rA Ą Bs

...
C B

WeakĄI
C

In this way, Milne is able to prove harmony (or something very similar to it) for every pair of
general-introduction and general-elimination rules.21

In contrast with Milne’s earlier proposal of using  IMilne or  IDummett, that do not suit our non-
circularity requirement,22 this later proposal of a general-introduction reformulation does not violate
any of the our criteria. The only lacks that we can find are:

• As acknowledged by the author himself, this solution does not work for first-order logic. To be
precise, it is not possible to save the subformula property without adding ad hoc restrictions to
the rules for @;23

• General-introduction rules do not suit the explicit definition of proof-theoretical validity seen in
section 1.2.2.

In this work we did not consider first-order logic, nonetheless the first problem can not be overlooked,
at least without an explicit motivation. About the second problem, there seems to be no proposal
for an application of this kind for general-introduction rules. As a consequence, the endorsement of
this solution asks for a bigger departure from standard proof-theoretic semantics than we are ready
to accept, at least prima facie.24

2.3 Bilateral systems and their problems

Rumfitt’s systems and their problems In [Rumfitt, 2000], the author proposes to save classical
logic using both assertion and rejection as primitive speech acts. According to the traditional view,
to reject a sentence is just to assert its negation, so there is no reason to assume the existence of a
primitive speech act of rejection. Rumfitt objects that this tradition neglects the differences that there
are between asserting the negation of a sentence (or answering “yes” when this negation is posed as a
question) and just rejecting the sentence itself (that is answering “no” when it is posed as a question).25

Regardless of the intuitive justification of the distinction between these two situations, the distinction
itself liberalizes a lot the structure that a system of logic can have. We will follow Rumefitt and
call this approach to meaning “bilateral”, as opposed to the “unilateral” approach based on assertion
alone. Rumfitt’s idea is that while Dummett is right in maintaining that only intuitionistic logic
suits the unilateral approach to theory of meaning, on the other side classical logic suits the bilateral
approach to theory of meaning. So we need to interpret the disagreement about which one of these
two logics is justified as a disagreement about whether a theory of meaning should be unilateral or
bilateral. Rumfitt suggest that maybe a unilateral approach is justified in some applications (like in
mathematics), while a bilateral one is justified in other applications (like in history).26

20The equivalence of the second rule for implication with WeakĄI is established in [Milne, 2010], p. 198.
21Pp. 207-209. General-elimination rules are E-rules that have the form of standard _E, they have been studied

by Read ([Read, 2010]), von Plato and Negri ([von Plato, 2001] and [Negri and von Plato, 2001]), Schroeder-Heister
([Schroeder-Heister, 1984]) and others. For every standard elimination rule, there is an equivalent general-elimination
reformulation.

22See section 1.1.2.
23[Milne, 2015], p. 217.
24Peter Milne told me in a private talk that he acknowledges and accepts this aspect of his general-introduction rules.
25[Rumfitt, 2000], section V.
26[Rumfitt, 2000], section VIII.
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`A `B
^I`

`pA^Bq

`pA^Bq
^E`

`A

`pA^Bq
^E`

`B

´pA^Bq

r´As

...
C

r´Bs

...
C

^E´
C

´A
^I´

´pA^Bq

´B
^I´

´pA^Bq

`pA_Bq

r`As

...
C

r`Bs

...
C

_E`
C

`A
_I`

`pA^Bq

`B
_I`

`pA^Bq

´A ´B
_I´

´pA_Bq

´pA_Bq
_E´

´A

´pA_Bq
_E´

´B

r`As

...
`B

ĄI`
`pA Ą Bq

`pA Ą Bq `A
ĄE`

`B

`A ´B
ĄI´

´pA Ą Bq

´pA Ą Bq
ĄE´

`A

´pA Ą Bq
ĄE´

´B

´A
 I`

`p Aq

`p Aq
 E`

´A

`A
 I´

´p Aq

´p Aq
 E´

`A

Table 2.1: Operational Rules

Let us now see the details of Rumfitt’s proposal and whether it works as a justification of classical
logic. First of all assertion and rejection are expressed with signed formulae: `A represents the
assertion of A, while ´A represents its rejection. Assertion and rejection occur only one time in every
formula, that is they can not be iterated, and they can occur only at the outermost position. As an
example, the following sentences are not well formed: ` ´ A,  ´ A, ´p`A ^ ´Aq. Just for this
section, we will follow Rumfitt in using lowercase Greek letters to indicate signed sentences in general,
and α˚ to indicate the opposite of α, that is ´A if α is `A and `A if α is ´A. Moreover, Rumfitt
accepts Tennant’s opinion that K is not a sentence, but just a punctuation mark that displays that
something wrong has happened with a derivation, so ` and ´ do not apply to it.27

Rumfitt formulates two different systems for classical logic, that we will call RUMFITT1 and
RUMFITT2. The first system contains all and only the operational rules for asserting and rejecting
complex sentences that are exposed in table 2.1.28 According to Rumfitt the only problem with this
system is that it is too big, so he proposes the system RUMFITT2, that contains only the rules
^I`, ^E`, _I´, _E´, ĄE`, ĄE´,  I` and  E` together with the coordination principles reduction
and non-contradiction of table 2.2. The third coordination principle, called Smiley, is just equivalent
to the sum of the other two, so that an equivalent formulation of RUMFITT2 can be obtained by
extending the same set of operational rules with it. The only difference between the two formulations
is that using Smiley we do not need K.

Rumfitt argues that these extra principles are only needed to make the other operational rules

27[Rumfitt, 2000], section IV.
28[Rumfitt, 2000], pp. 800-802.

35



r`As

...
K

Reductio
´A

r´As

...
K

Reductio
`A

`A ´A
non-contradiction

K

r`As

...
`B

r`As

...
´B

Smiley
´A

r´As

...
`B

r´As

...
´B

Smiley
`A

Table 2.2: Coordination Principles

derivable, but while it is true that in RUMFITT2 we can derive all the operational rules of RUM-
FITT1 thanks to these principles, they are nonetheless needed in general to obtain an adequate
system for classical logic. Indeed RUMFITT1 formulated without coordination principles is weaker
than classical logic, although it contains all the operational rules.29 So we need to assume both re-
duction and non-contradiction (or Smiley) regardless of our choice to assume all the operational rules
or only these of RUMFITT2.30

After proposing his system for classical logic, Rumfitt argues that this is the only acceptable system
in such a bilateral framework. The argument consists of three steps:31

1. The coordination principle of non-contradiction should be assumed only for the atomic sentences
and the operational rules should preserve it;

2.  I` and  E` define the meaning of  , and  E´ is needed to prove non-contradiction for
negated sentences (from the assumption that it works for atomic sentences);

3.  E` and  E´ together prove double negation elimination.

The first point seems to be shareable, even though it will cause some troubles that we will discuss
later, and the third point is just a matter of computation:

`p  Aq
 E`

´p Aq
 E´

`A

The second point is the most controversial. We will neglect to discuss Rumfitt’s idea that  I` and
 E` define the meaning of  , and just take for granted that there are good reasons for this choice.
The big problem with this step of the argument is that Rumfitt is able only to show that  E´ is
sufficient to derive non-contradiction for negated sentences, while on the contrary, he can not prove
that the adoption of this rule is necessary because, as observed by Gibbard, we have other rules that
work fine. Gibbard proposes the following rule32

´pAq ´p Aq
 E´Gibbard K

and it indeed preserves non-contradiction but can not be used to derive double negation elimination.
So the choice of  E´ and the subsequent justification of classical logic seem to be more arbitrary than
Rumfitt admits.

Rumfitt answers to Gibbard’s objection by denying that  E´Gibbard,  I´,  E` and  I` together
are able to specify the meaning of  .33 His argument for this conclusion is that Gibbard’s rules do
not specify the conditions under which a negated sentence could and should be rejected. Indeed, while
 I´ gives sufficient conditions for the rejection of  A,  E´Gibbard can not establish their completeness,
since it is not in harmony with the first rule.

Nonetheless, while this answer could work as a rejection of  E´Gibbard, it does not establishes that
 E´ must be adopted in a set of rules that preserves non-contradiction and is able to specify the

29It is a kind of constructive logic with strong negation, in which de Morgan’s laws and double negation elimination
hold, but tertium non datur does not. See [Gibbard, 2002], p. 297 note 2.

30Rumfitt accepts this conclusion and argues that coordination principles were already planned to be assumed in his
first system, so we will use the label RUMFITT1 also for this extended system. See [Rumfitt, 2002].

31[Rumfitt, 2000], p. 814-816.
32[Gibbard, 2002], p. 299-300.
33[Rumfitt, 2002], p. 310.
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meaning of  . Indeed Kürbis proposes an intuitionistic bilateral system that is harmonious and that
preserves non-contradiction.34 In order to obtain his intuitionistic system, he opts for a revision of
both the operational rules and the coordination principles of RUMFITT1.

About the operational rules, Kürbis proposes to substitute Rumfitt’s rules with the following:35

r`As

...
´B

^I´
´pA^Bq

´pA^Bq `A
^E´

´B

´B

r´As

...
α

r´As

...
α˚

ĄI´
´pA Ą Bq

´pA Ą Bq ´A
ĄE´

β

´pA Ą Bq
ĄE´

´B

r´As

...
α

r´As

...
α˚

 I´
´p Aq

´p Aq ´A
 E´

β

Now, in order to obtain an intuitionistic system, we assume only the following version of Smiley:36

r`As

...
`B

r`As

...
´B

Intuitionistic Smiley
´A

Kürbis proves that his intuitionistic system shares all the good properties of RUMFITT1, and so
concludes that Rumfitt’s argument that a bilateralist approach leads necessarily to the justification
of classical logic is wrong.

Let us now return to the problem of step 1. While it is plausible that non-contradiction should be
assumed only for atomic sentences and the operational rules should preserve it for logically complex
ones, it seems reasonable to require the same for reduction. Unfortunately, this can not be done, as
discovered by Ferreira: we need to assume this coordination principle for the entire language.37 The
same situation holds also for Smiley, so we can not solve this problem by changing the formulation.38

Ferreira correctly points out that, as a consequence of this phenomenon, coordination principles are
not irrelevant for the meaning of logical terms. Were it enough to postulate them for atomic sentences,
they would be just principles about the relation between speech acts of assertion and rejection; we
would have coordination principles that characterise assertion and rejection, and operational rules that
define the meaning of logical terms. Unfortunately, the restriction of reduction to atomic sentences
change the behaviour of logical terms, so this distinction can not be so clear.

The situation is even worse, because, not only we need justification of coordination principles
for complex sentences and we lack it, but there are also alternative coordination principles that
lead to other logical systems. Indeed as we already saw, both Humberstone and Kürdis propose
intuitionistic bilateral systems that use other coordination principles. To tell the truth, Kürbis’s
system is different from Rumfitt’s ones also regarding the operational rules. Nonetheless, Kürbis
himself seems to acknowledge that, although his intuitionistic system and Rumfitt’s classical one differ
both in their operational and coordination rules, the main difference is given by the second group.
Indeed just the extension of them makes derivable the classical operational rules, while the purely
operational extension is not adequate for classical logic (as shown for the first system of Rumfitt). So
the disagreement between classical and intuitionistic logic ends up being a disagreement between two
coordination principles that are not justified in our bilateral theory of meaning:39

“The question about which logic is the right one has thus been pushed from the operational
rules governing the connectives, as was Dummett’s proposal, to the structural rules of the

34[Kürbis, 2016], p. 634-637. His system is explicitly inspired by that of [Humberstone, 2000].
35All the other operational rules in RUMFITT1 are adopted without any change.
36Of course we could obtain also an intuitionistic system that uses K and the coordination principles reductio and

non-contradiction.
37[Ferreira, 2008].
38[Kürbis, 2016], p. 635.
39[Kürbis, 2016], p. 637.
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system. Dummett gave criteria for singling out justified operational rules. Rumfitt has
not provided a similar proposal to single out justified structural rules.”

Kürbis is quite sympathetic to this conclusion and seems to foresee the possibility for a kind
of logical pluralism. This is in line with his idea that proof-theoretic semantics should not try to
characterise all the meaning of logical terms, but just some of its aspects. Indeed we already saw his
opinion about the impossibility of characterising completely negation and absurdity using inferential
rules,40 and he poses some similar problems also for modal terms.41 Nonetheless, we will not consider
this as a viable alternative. Indeed in order to obtain a pluralism, we need to have the validity of
some logical systems, while here we have two systems that contain rules that are not justified.42

This far, we have found two main objections to the bilateral justification of classical logic:

• Coordination principles are not justified (and what is worse they can not be restricted to atomic
sentences in general);

• They are responsible for the choice of the right logic.

Let us now consider another, more recent criticism that tries to undermine bilateralism in general.

Gabbay’s new objections Michael Gabbay proposes the two following problems for bilateralism:43

• Although, as we saw in section 1.2.1, Read’s proposal of a logical constant ‚ for liar’s paradox
can not be accepted in unilateral proof-theoretic semantics, there are trivialising rules for this
constant in a bilateral framework that can not be rejected;

• Although the usage of tonk -rules in a unilateral framework allows the construction of non-
normalizable derivations, in a bilateral one we can normalize those derivations.

The first argument is developed in three steps. First of all, Gabbay proposes the following pair of
rules, that leads to triviality if paired with coordination principles:

´‚

`‚

`‚

´‚

The author points out that they are neither I nor E-rules, and that for this reason they can not be
accepted. His idea is to find sets of rules that behave similarly but that are acceptable in bilateral
proof-theoretic semantics. The first set of rules of this kind that he proposes is:

`A
‚I´

´‚

´A
‚I`

`‚

`‚ ´A
‚E´

´A
´‚ `A

‚E`
`A

As Gabbay observes, clearly an introduction and a subsequent elimination of ‚ can be easily reduced,
so these rules suit Inversion Principle. This observation is enough for Gabbay in order to conclude
that these rules are harmonious, but we posed more stringent requirements abut normalizability.44

Nonetheless, there are no problems even for our definition of harmony, since in this case we do not
use pairs of I and E-rules to derive K, but just pairs of I-rules for assertion and rejection. Indeed, just
using ‚I´, ‚I` and Smiley we can prove both `p and ´p for every sentence p.45

The third and more interesting set of rules that Gabbay evaluates is:

`A ´A
‚I´

´‚

`A ´A
‚I`

`‚

`‚
‚E`

`A
`‚

‚E`
´A

´‚
‚E´

`A
´‚

‚E´
´A

This set of rules has all the interesting properties of the previous one: the rules suits Inversion
Principle, qualify as good introduction and elimination rules, and leads to triviality, since:

r`‚s1

‚E`
`B

r`‚s1

‚E`
´B

Smiley 1
´‚

‚E´
`A

r`‚s1

‚E`
`B

r`‚s1

‚E`
´B

Smiley 1
´‚

‚E´
´A

40See section 1.2.3.
41[Kürbis, 2015a] section 5.
42We will see in chapter 4 our proposal for an inferentialist pluralism.
43[Gabbay, 2017].
44See definition 1.2.5 in section 1.2.1.
45Gabbay’s formulation uses Smiley, but of course you could substitute it with non-contradiction and reduction.
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Moreover, the introduction rules are valid instances of Smiley, with a vacuous discharge of `‚ in
‚I´ and of ´‚ in ‚I`. So they are not only acceptable because in harmony, but also acceptable
because derivable from Smiley. In passing, the fact that Rumfitt’s formalization of bivalence does not
exclude incoherence is even more problematic if we consider the fact that the author explicitly rejects
Dummett’s opinion that logic should not entail coherence.46

It is important to remark that this counterexample does not prove too much, that is that these
sets of harmonious but trivialising rules can not be adapted for undermining unilateral proof-theoretic
semantics using negation instead of rejection. Indeed, as observed by Gabbay himself the rules

A  A
 ‚

A  A
‚

‚

A
‚

 A
 ‚

A
 ‚

 A

qualify both as rules for ‚ and as rules for  .47 As a consequence if we adopt them, the rules of
negation are no longer harmonious and can not be accepted. As an example, it seems uncontroversial
that in general we can not reduce derivations in which an application of  I used to derive  ‚ is

followed by an application of
 ‚

A .48

In an answer to Gabbay, Francez points out that none of the sets of rules proposed is really
acceptable, because they do now show the right relation between assertion and rejection.49 This is more
obvious in the last such set, since ‚I` and ‚I´ have the same premises but derive different (opposite)
conclusions. Francez’s observation about how assertion and rejection usually work in everyday life is
shareable: the conditions that justify the assertion of a sentence usually are not the same that justify
its rejection. Nonetheless, there are pathological cases in which this happens, like for liar’s sentence.
Francez’s intention of excluding these cases is comprehensible and in line with the proof-theoretic
approach to linguistic practice, but we have to evaluate his means to do so.

Francez proposes that there should be a horizontal balance between rules for ` and rules for ´,
and, for this task, he proposes a principle that should work like harmony.50 With his principle, he can
obtain the rules for the rejection of a constant functionally from its rules for the assertion. The formal
details of his proposal are not important, but this principle manages to exclude Gabbay’s rules, at
least formally.51

I think that there are nonetheless some problems for Francez’s solution from the meaning-theoretical
point of view. Indeed he proposes it as a “non-technical reason” to believe that classical logic suits
bilateralism, but it is a purely formal principle that needs justification. We saw the same problem for
the coordination principles of Rumfitt but, in this case, the situation is even worse, since the entire
coherence of bilateralism is in doubt. Surely, Francez can rely on the idea that assertion and rejection
should be coherent and claims that also Restall’s bilateral approach in [Restall, 2005] starts from
this assumption, but proof-theoretic semantics asks for something more than an intuitive justification.
Traditional request for harmony comes from the idea that I-rules define the meaning of the connectives
and E-rules are in some way justified if they are harmonious. In order to ask for horizontal balance,
it seems that we need something similar to happen for ` and ´. But this poses some interesting
problems.

Rumfitt claims that both his systems are separable, since every classically valid logical consequence
can be proved using only rules for the connectives that explicitly occur in the result.52 Nonetheless,
we have seen that it is necessary to assume some principles about the relationship between ` and
´, and that they also interact in strange ways with the behaviour of the logical constants. We saw
that we need coordination principles in order to have a classical system, and we also need horizontal
balance in order to have coherence. So we could argue:

• That in order to decide about separability for logical terms we should also consider the applica-
tion of coordination principles for non-atomic sentences;

• That we should also consider the occurrence of ` and ´ when we evaluate separability.

While I doubt that the first point poses some real threats, since the application of a coordination
principle for a non-atomic sentence shall be paired with some operational rules for the outermost
constant, I think nonetheless that the second point is heavily problematic, since already the proof of
`p  Aq $ `A asks for applications of ´. So apart from the problem of justifying both coordination

46[Rumfitt, 2000], section IV.
47[Gabbay, 2017], p. S112, note 8.
48We already stressed this point when we were evaluating Read’s proposal of ‚ in standard unilateral proof-theoretic

semantics. See section 1.2.1.
49[Francez, ming].
50[Francez, ming], section 4.
51The formal details are developed in [Francez, 2013] and in section 4.4.1.7 of [Francez, 2015].
52[Rumfitt, 2000], p. 808.
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principles and horizontal balance in a bilateral approach, these principles endanger also separability
of the system, since they raise the problem of the meaning of ` and ´. Maybe a weak separability
criterion could save the situation, but I could not find any author working in this field that proposes
such a solution.

Let us now consider Gabbay’s second objection.53 He believes that the adoption of Smiley entails
an enlargement of the notion of “normal derivation” and that, for this reason, it enables the reduction
of the maximal formulae generated by tonk -rules. If this is the case, then any bilateral version of proof-
theoretic semantics that includes this rule is not able to exclude tonk and so to warrant consistency.
His proposal for such a reduction is:

`A
tonkI

`pAtonkBq
tonkE

`B

ù `A
tonkI

`pAtonkBq

r`pAtonkBqs
1

tonkE
`B r´Bs

2

Smiley1
´pAtonkBq

Smiley2
`B

Of course this “reduction” looks very strange, but it is true that it manages to derive B from A
without producing maximal formulae, since the major premise of tonkE is not the conclusion of tonkI.
Francez argues that the second derivation does not qualify as a real reduction of the first, because it
does not solves the problem caused by tonk, but just spreads it out in the derivation. That is there
still is a detour, although it is not in plain view. According to Francez, reduction procedures should
also be specifications of something already contained in the derivation that we reduce, but this is not
the case with this alleged reduction.54

While I agree with Francez in his evaluation of this “reduction”, I believe that he misinterpreted
Gabbay’s intentions, or at least that his counterexample could be adjusted so as to answer to Francez’s
objections. Indeed Gabbay seems to acknowledge that what he proposes is not a valid reduction but,
nonetheless, there should still be a formal criterion that points out this, while in a system with Smiley
it is not clear how we can reject it. I think that another, symmetric way of looking at Gabbay’s
observation could shed light on what I mean. Since according to Francez the derivation on the right
does not qualify as in normal form, it should qualify as containing a detour. Nonetheless, the standard
definition of maximal formula is useless for this purpose, since in it there is no conclusion of I-rule
that is the major premise of an E-rule. The observation that the detour is just “spread out” in the
derivation is just an intuitive observation, so we need something more concrete. As a consequence, in
the bilateral systems we should take care also of these hidden detours (or fake normal derivations),
while there seems to be no possibility to do so.

It seems that the issue of distinguishing acceptable and unacceptable reductions, and the issue of
acknowledging the detour present in Gabbay’s alleged reduction are essentially the same. So a formal
criterion that discriminates between valid and non-valid reductions should use a more general notion
of maximal formula. Nonetheless, while Francez’s meaning theoretical reasons are arguably enough to
disqualify Gabbay’s alleged reduction, we need a precise formal criterion to discriminate and a precise
reduction procedure to deal with this new kind of non-normality. I am not sure whether this is the
original attack plan of Gabbay or a reformulation of it, but there seems to be no significant answer
to it in Francez’s paper.

Something similar happens when we accept disjunction in a natural deduction system and we are
forced to consider maximal sequences in addition to maximal formulae. Indeed if we do not define
maximal sequences, then we could eventually use _-rules to “reduce” some maximal formulae, by
moving an application of _E between the I and the E-rule in the following way:

A_B

rAs

...
C

‘I
D

‘E
E

rBs

...
C

‘I
D

‘E
E

_E
E

ù

A_B

rAs

...
C

‘I
D

rBs

...
C

‘I
D

_E
D

‘E
E

Admittingly, it is not easy to imagine a very dangerous application of this fake reduction procedure,
since it asks for a very specific situation. Indeed obviously this “reduction” procedure can not be
applied to every maximal formula. Nonetheless, there is at least a case in which the availability of
this reduction is relevant. Let us consider what happens if we add to tonkI the following condition of
applicability: the major premise of the tonk -rule must depend on an assumption that is discharged

53[Gabbay, 2017], pp. S113-S114.
54[Francez, ming], section 5.
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by an application of _E such that the minor premise of _E that depends on the same assumption
is the tonk -formula or the conclusion of the rule that has this formula as major premise, and in the
sub-derivation of the other minor premise there must be another application of tonkI that has the
same form. That is to say, the only acceptable application of this new kind of tonk is

A_B

rAs

...
C

tonkI
CtonkD

‘E
E

rBs

...
C

tonkI
CtonkD

‘E
E

_E
E

This is a variation of the traditional tonk -rules that is only apparently less dangerous. Indeed this
“weakened” tonkI can be used together with standard tonkE to prove K in the following way:

rAs
1

ĄI1
A Ą A

_I
pA Ą Aq _ K

rA Ą As
2

tonkI
pA Ą AqtonkK

tonkE
K

rKs
2

Efq
A Ą A

tonkI
pA Ą AqtonkK

tonkE
K

_E2
K

Since we pose coherence as a minimal requirement for the acceptability of a set of rules, we want to
reject this reformulation of tonk. Interestingly, if we do not qualify maximal sequence as a kind of
detour, we are forced to accept this as a good pair of rules. Indeed the following reduction procedure
can be given:

A_B

rAs

...
C

tonkI
CtonkD

tonkE
D

rBs

...
C

tonkI
CtonkD

tonkE
D

_E
D

ù

A_B

rAs

...
C

tonkI
CtonkD

rBs

...
C

tonkI
CtonkD

_E
CtonkD

tonkE
D

On the contrary, if we define maximal sequences in the usual way, we can not accept this reduction
because the derivation on the right neither is in normal form, nor can be reduced to normal form. That
is the rejection of this alleged reduction step is the same as the extension of the notion of maximal
formula. In the same way, the rejection of Gabbay’s proposed reduction should be paired with an
extension of this same notion. Unfortunately, such an explicit generalization is missing in Francez’s
paper, so we can not see his answer as satisfactory.55

In conclusion, while in contrast to the system based on general-introduction rules, it comprises
a complete characterization of proof-theoretic validity,56 bilateral proof-theoretic semantics still has
some open problems:

• A justification of the coordination principles and of Francez’s horizontal equilibrium is needed
in order to consider it as a valid solution. It is not improbable to find such a justification, but
I suspect that it requires a great departure from the orthodox Dummettian approach. It is not
by accident that the only philosopher Francez refers to when he tries to justify his principle of
balance is Greg Restall, that explicitly departs from the standard proof-theoretic approach that
we are investigating here and adopts a conception of the theory of meaning inspired by Brandom’s
work.57 Moreover, such a justification should also solve the worries about the influence that these
rules have on the meaning of the logical terms and about their consequent role in the selection
of the right logic.

• A generalization of the notion of maximal formula is needed in order to deal with new kinds of
non-normality that exploit coordination principles. As we just saw, another side of this problem
is the lack of a precise reason to reject unwanted reduction steps for tonk -rules.

55We will see that we need a similar generalization of the notion of maximal formula in our favourite reform of
proof-theoretic semantics as well, both for intuitionistic and classical systems. Nonetheless, we will deal with it in what
I believe is a satisfactory way. See sections 3.2.2 and 3.3.2.

56[Francez, 2013] and [Francez, 2015].
57See [Restall, 2005] and [Restall, 2008] inter alia.
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Axiom

Añ A

Structural Rules

Γ ñ ∆
Weak ñ

Γ, A ñ ∆
Γ ñ ∆

ñWeak
Γ ñ A,∆

Γ, A,A ñ ∆
Conñ

Γ, A ñ ∆

Γ ñ A,A,∆
ñ Con

Γ ñ A,∆

Γ, A,B,Θ ñ ∆
Permñ

Γ, B,A,Θ ñ ∆

Γ ñ ∆, A,B,Λ
ñ Perm

Γ ñ ∆, B,A,Λ

Γ ñ A,∆ Θ, A ñ Λ
Cut

Γ,Θ ñ ∆,Λ

Operational Rules

Γ, A ñ ∆
^ ñ

Γ, A^B ñ ∆

Γ, B ñ ∆
^ ñ

Γ, A^B ñ ∆

Γ ñ A,∆ Γ ñ B,∆
ñ ^

Γ ñ A^B,∆

Γ, A ñ ∆ Γ, B ñ ∆
_ ñ

Γ, A_B ñ ∆

Γ ñ B,∆
ñ _

Γ ñ A_B,∆

Γ ñ A,∆
ñ _

Γ ñ A_B,∆

Γ ñ A,∆ Θ, B ñ Λ
Ąñ

Γ,Θ, A Ą B ñ ∆,Λ

Γ, A ñ B,∆
ñĄ

Γ ñ A Ą B,∆

Γ ñ A,∆
 ñ

Γ, A ñ ∆

Γ, A ñ ∆
ñ  

Γ ñ  A,∆

Table 2.3: LK

While maybe there could be a solution to the second problem, I am more pessimistic about the first
one. Indeed coordination principles seem to be acceptable in proof-theoretic semantics only if they
are dispensable – that is if they are used only to make more contract the system, as in the original
plan of Rumfitt –, but this can not be the case here, as we saw. Since this approach seems to be
unsatisfying, let us now move on to some other proposals.

2.4 Multiple-conclusion systems and their problems

This section is in some way a point of no return for this research. Indeed the attempt to justify
classical logic with multiple-conclusion systems inspires a main criticism to a shared assumption of all
the proof-theoretic semantics projects seen until now. Since we will not be able to rebut this criticism
and we will see that the common objections posed to it are lacking, we will bite the bullet and impose
a major change in proof-theoretic semantics, by abandoning the relevant assumption.

First of all, let us consider the standard arguments for a multiple-conclusion justification, and how
this attempt to save classical logic gets developed. Then, we will use the standard criticisms of this
framework to reform all proof-theoretic semantics.

2.4.1 Sequent calculus

The status of sequent calculus One of the main reasons to believe that a multiple-conclusion sys-
tem could justify classical logic is the sequent calculus system LK (table 2.3) proposed by Gentzen.58

Indeed this system is adequate for classical logic and suits all the sequent calculus equivalents of the

58[Gentzen, 1969b].
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proof-theoretic requirements that we are looking for: it is separable, it suits subformula property and
it suits Cut elimination (that is essentially the counterpart of harmony).

Technically speaking, this system does not use multiple conclusions. Indeed, both the premisses
and the conclusions of this system are sequents, and there are no rules with more than one sequent in
the conclusion. Nonetheless, sequent calculus can be seen as a meta-calculus that speaks of a derivation
system and, according to this interpretation, LK speaks about a multiple-conclusion system. This
reading of sequent calculus is not uncontroversial, and indeed Shoesmith and Smiley distinguish two
distinct interpretations of sequent calculi:59

material interpretation: the arrow is an object-language conditional, so that the meaning of
A1, . . . , Am ñ B1, . . . , Bn is pA1 ^ . . .^Amq Ą pB1 _ . . ._Bnq;

60

metalinguistic interpretation: the arrow is equivalent to the metalinguistic term “$”, so that
the sequent calculus is a meta-calculus that speaks of an objective-language calculus and the
meaning of A1, . . . , Am ñ B1, . . . , Bn is that in that calculus the conclusions B1, . . . , Bn are
derivable form the assumptions A1, . . . , Am.

Of course, the relevant reading for proof-theoretic semantics is the second one, and it is a con-
sequence of this reading that we need some kind of justification of multiple-conclusion systems in
order to accept the mere existence of LK as an antirealistic justification of classical logic. The first
interpretation is at odd with proof-theoretic interpretation because it leads to rules that seem to be
neither I, nor E-rules. Moreover, if we try to interpret ñĄ as the meaning conferring rule for Ą we
obtain a violation of non-circularity,61 since in

pΓ^Aq Ą pB _∆q
ñĄ

Γ Ą ppA Ą Bq _∆q

Ą occurs both in the premise and in the conclusion, and so there is a circular dependence of meaning.
On the other side, the choice of Ąñ as meaning conferring rule poses the same problem, and the
choice of ñ ‘ as meaning conferring rule for ‘ is, in general, justified by the similarity between
introduction rules in natural deduction and rules on the right in sequent calculus. In addition, this
analogy is supported by all the standard translation of derivations from natural deduction to sequent
calculus and vice versa.62

Of course this problem is a consequence of the well-known circularity that we encounter if we try
to define validity using ĄI: ĄI asks for a valid derivation of B, possibly form an open assumption A,
in order to introduce A Ą B, so a definition of validity that takes for granted an understanding of
ĄI is in danger of circularity. Nonetheless, we saw in section 1.2.2 that it is possible to avoid this
circularity between ĄI and validity, at least for purely logical derivations, by an explicit definition
of validity that uses canonical proofs and reduction procedures. On the contrary, by accepting the
material interpretation of sequent calculus and the subsequent interpretation ofñĄ we obtain a direct
circularity, that can not be solved in this way. For this reason, the first reading is disqualified in our
case.63

Endorsing the metalinguistic reading of sequents means that in order to evaluate the acceptability
of LK or of other sequent calculi for classical logic, we need to evaluate the acceptability of the
object-language systems that they describe. This can be done in two different ways:

• By focusing on the properties of the sequent calculus and so only indirectly on the properties of
the object-language system described;

• By reconstructing the object-language system and evaluating directly it.

We will focus mainly on the second approach, since it is obviously easier to evaluate directly the
properties of a system, than indirectly, using another system that describes it. Nonetheless, it is worth
spending some words also on the proposals of the first kind, and this is what we are going to do in
this section.

59[Shoesmith and Smiley, 1978], p. 33.
60We should be more careful in the application of conjunction and disjunction, but nonetheless the idea is clear, so

we follow the authors (and Gentzen) by neglecting this issue here.
61See definition 1.1.9.
62[Gentzen, 1969b], section V subsection 4 for the translation from natural deduction to sequent calculus; [Prawitz,

1965], appendix A section 2 for the opposite translation (Prawitz proposes a translation of multiple-succedent sequent
calculus that does not use multiple-conclusion, but it has the same problems of Prawitz’s formulation of natural deduction
for classical logic). Moreover, [Negri and von Plato, 2001] is a monograph entirely dedicated to the topic of the
relationship between natural deduction and sequent calculus, in which the authors evaluate different sequents calculi
and translations. One of the few standing points is that rules for the introduction on the right are the sequent calculus
equivalent of the I-rules.

63Nonetheless, we will see that some of its aspects are shareable, like the connection of multiple-antecedent with
conjunction, and of multiple-succedent with disjunction.
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Hacking Apart from a general vulgate about the possibility of justifying classical logic using sequent
calculus instead of natural deduction, the first well developed proposal in this direction is [Hacking,
1979].64 Hacking has essentially two purposes in this work: to find a criterion to discern logical terms
from non-logical terms and to justify logic. The two issues turn out to be heavily connected. Anyway,
the first issue is tied to Hacking’s endorsement of a weakened version of logicism, that we do not have
space to cover, so we will focus mainly on the justificatory part of his speculations.

Hacking’s idea is that the logical laws are essentially by-products of the way in which logical terms
are used in general. He takes this position from Wittgenstein’s Tractatus, where logical laws come out
from combinatorial properties expressed by truth tables, but reinterprets this idea in an antirealistic
perspective:65

“Then some compound sentences take the value true regardless of their components. This
fact is a by-product of rules for the introduction of the logical constants.”

Hacking uses Gentzen’s distinction between operational and structural rules, arguing that:

• Structural rules correspond to basic properties of logical consequence, that is transitivity (Cut),
idempotence (Weakening) and reflexivity (Axiom), and so they are complete for the prelogical
language of sequent calculus (that is the version of sequent calculus without operational rules
derives all the logical consequences that are necessarily present in a language without connec-
tives).66

• Operational rules characterise the meaning of the logical terms but, since neither characteriza-
tions nor definitions tout court should extend or reduce our knowledge of the world, Hacking
asks that their addition to structural rules be conservative. Instead of asking directly for con-
servativeness, Hacking asks for the subformula property and for the following theorems:

Cut elimination: The Cut rule must be admissible, that is every sequent provable in the
system with the Cut rule must be provable also without it;

Preservation of Axiom and Weakening: The general version of the rules of Axiom and
Weakening must be admissible in the system with only their version restricted to atomic
main formulae.

Of course, Cut elimination entails Cut preservation, so we have this requirement for all the
structural rules. Hacking’s reasons to ask the preservation of the basic properties of deduction
is that, otherwise, $ (or ñ) would mean something different in the pre-logical language and
in the full language. His main inspiration for this requirement is Prior’s connective tonk, for
which he proposes an analysis that is in line with Belnap’s, since both asks for conservativeness.67

According to Hacking, the problem with tonk is that it can not be adopted in a language without
losing transitivity of deduction, that is without modifying the meaning of$, and this is the reason
why it must be rejected.68 The author asks the full admissibility only of the Cut rule because he
sees a connection between this theorem and conservativeness.69 This connection is intuitively
acceptable, but we saw (in section 1.2.2) that a similar connection between normalizability and
conservativeness is unlikely to hold in general, and it seems implausible that Cut elimination
has more chance of success. This is probably the reason why Hacking shows flexibility in his
criteria.70

So the distinctive characteristic of logical terms is that they can be characterised using rules for
sequents that suit some structural properties.71 Later on in the paper, Hacking argues that (model-
theoretic) semantic criteria can be devised based on these proof-theoretical ones, that anyway do not
lose their primacy.

64His metalinguistic interpretation of sequents is expressed on p. 292, but he never considers directly the system
described by LK.

65[Hacking, 1979], p. 288. Section IV is entirely devoted to the endorsement of antirealism.
66[Hacking, 1979], p. 293 for the basic properties of deduction (that are sufficient, but arguably not necessary, prop-

erties to a be a relation of deduction) and p. 311 for the completeness of structural rules.
67Hacking’s refers explicitly to [Prior, 1960], but he does not mention [Belnap, 1962]. See [Hacking, 1979], p. 296.
68Tonk’s issue with transitivity is well-known in general, nonetheless there is at least a proposal of a transitive system

in which this constant can be accepted: [Cook, 2005]. It could be interesting to evaluate the acceptability of this logic
from the point of view of Hacking’s criteria.

69P. 296.
70See section XIV
71Already on page 291 Hacking asserts that he “give(s) reasons for saying that anything defined by a rule of inference

like Gentzen’s is a logical constant”, but he takes all the article to explain what it means for a rule to be like Gentzen’s.
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I think that this attempt of justifying classical logic fells victim of a criticism proposed by Rumfitt
for justifications based on sequent calculus in general. Rumfitt argues that in sequent calculus “the
sentences r. . .s are mentioned rather than used”, while it is usage that gives the meaning of expres-
sions.72 To be precise, his observation is directed against [Shoesmith and Smiley, 1978], but these
authors do not focus exclusively on sequent calculus, so I believe that it is better to evaluate it in
relation with other proposals, like Hacking’s one.

Let us look deeper into Rumfitt’s objection. He observes that if we accept the metalinguistic
reading of sequents, then we have to interpret them as meaning something like: {“If it is raining then
it is not snowing”, “It is raining”} entails {“It is not snowing”}.73 Indeed they are sets of sentences
connected by a relation of entailment, symbolized byñ. Since we need usage in order to have meaning,
we have to investigate the possibility of using the sentences according to the entailments described by
the sequent calculus. But while this can easily be done for single-succedent sequent systems, there
seems to be no possibility of having such usage for multiple-succedent systems. We will see that this
objection is not completely right, indeed we can devise multiple-conclusion systems also accepting
most of the restrictions imposed usually in proof-theoretic semantics.74 Nonetheless, it is surely true
that Hacking neglects to answer this issue, taking for granted the possibility of a multiple-conclusion
object language system.75

Restall’s bilateral approach Before considering viable answers to Rumfitt’s objection, let us
consider a further approach based on sequent calculus that, contrary to Rumfitt’s one, can hardly
answer to Rumfitt’s objection. Greg Restall proposes a meaning-theoretic interpretation of sequent
calculus that is metalinguistic but does not describe deduction directly.76 He assigns to every sequent
Γ ñ ∆ a dialogical state rΓ; ∆s in which a speaker asserts each sentence in Γ and deny each sentence
in ∆. We already argued when we were evaluating Rumfitt’s version of bilateralism that Restall’s
justification of logic is very far from proof-theoretic semantics, but the criticism that we are rising here
is more deep. According to Restall, some states are incoherent and so self-defeating, like rA;As, in
which a speaker asserts and denies the same sentence. While incoherent states can never be adopted
correctly, depending on the theory of negation that one endorses, inconsistent cases, that is cases in
which he asserts both a sentence and its negation, can be acceptable. By distinguishing coherence
and consistency Restall obtains a very flexible system, that can be adapted at least to classical,
intuitionistic and dual-intuitionistic logics.77

Provable sequents, that we will indicate as $ Γ ñ ∆, correspond to incoherent states, and so the
rules of sequent calculus deal with conditions of coherence. While operational rules describe what we
can or can not coherently assert and reject about complex sentences, based on what it is coherent to
assert and reject about less complex sentences, Restall pairs structural rules of LK with properties of
coherence and incoherence of states in general:

• Axiom Añ A corresponds to incoherence of rA;As;

• Weakening rules
Γ ñ ∆
Γ ñ A,∆

and
Γ ñ ∆
Γ ñ A,∆

correspond to the property that if rΓ; ∆s is

incoherent, then also rΓ1; ∆1s, with Γ1 Ě Γ and ∆1 Ě ∆, is incoherent;

• Cut rule
Γ ñ A,∆ Θ, A ñ Λ

Γ,Θ ñ Λ,∆
corresponds to the property that if rΓ; ∆s is coherent,

then so is one of rΓ, A; ∆s and rΓ;A,∆s.

To sum up, the core ideas of Restall’s antirealism is that ñ is not interpreted as a metalinguistic
property of entailment or derivability any more, but as a marker for the distinction between asserted
and rejected sentences, and that the proof of a sequent $ Γ ñ ∆ is interpreted as establishing that
the corresponding state rΓ; ∆s is incoherent.

Of course, the principles about incoherence that correspond to structural rules are all intuitively
acceptable, but is this a justification of these rules? Restall explicitly assert that this is the case,

72[Rumfitt, 2000], p. 795.
73[Rumfitt, 2000], p. 795.
74And a justified rejection of multiple-conclusion leads to an equivalent rejection of multiple-assumption, so to abandon

standard proof-theoretic semantics.
75He explicitly refuses to discuss the issue of multiple-conclusion, [Hacking, 1979], p. 293.
76[Restall, 2005] is the main reference, but the author developed further his theory in [Restall, 2008] (where he develops

the connection of his theory with Brandom’s inferentialism), [Restall, 2009b] (where he proposes a reconstruction of truth
values and models based on idealised states of assertion and denial), [Restall, 2013] (where he proposes an application
of assertion and rejection to non-logical theories) and [Restall, 2014] (where he proposes a logical pluralism based on
this antirealistic framework).

77See [Restall, 2014]. In this paper, he also defends a version of logical pluralism by exploiting this framework, as we
will see in section 4.4.
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but I think that we have good reasons to believe the contrary.78 As Rumfitt tells us, in order to
have a proof-theoretic justification, we need to deal with usage of sentences, since use determines the
meaning. Nevertheless, Restall’s interpretation of sequent calculus does not explain how sentences are
used, but just how to evaluate whether a state is coherent or not. Indeed, which inferential use could
a rule like

Γ, A ñ ∆
ñ  

Γ ñ  A,∆

describe? If this rule is applied in a (well-formed) derivation, we know that both the premise and the
conclusion are incoherent, and indeed this is what the rule says. So it surely describe a way in which
sentences can not “be used”: you can not assert all the sentences in Γ and reject all the sentences
in ∆ plus  A, as you can not assert all the sentences in Γ plus A and reject all the sentences in ∆.
Arguably you can read the rule upside-down as proposed in [Restall, 2009b] to infer possible coherent
extensions of the state in which you are.79 Nonetheless what we can at most obtain in this way is
a metalinguistic description of what is considered a coherent position, and so of how we can switch
between a state and the other. Of course, this is a description of a linguistic practice in some way,
but it is not a deductive practice, since deduction is surely something more than randomly skipping
from coherent to coherent cognitive states. As a consequence, we have nothing like an inferential
usage of sentences that can determine the meaning of logical expressions. This is the reason why ñ
is not interpreted as $, but just as a punctuation mark to sever assertion and rejection. If we want to
reconstruct an inferential practice from this interpretation of sequent calculus, we need to go in the
direction of explicit bilateral systems like Rumfitt’s one,80 but Restall takes another path.

In [Restall, 2005] there is an example of a reconstruction of the inferential multiple-conclusion
practice of proof by cases, according to the lines of proof-theoretic semantics. However it does not
use rejection, and indeed the approach of the author in the section that contains this example is
more similar to Stephen Read’s “justification” of classical logic (that we will evaluate soon), than to
the rest of Restall’s paper. Indeed just for this section, the author uses a unilateral approach and
speaks of multiple conclusions, while in the rest of the paper he speaks at most of multiple succedents
(that are not interpreted as conclusions, but as rejections, according to Restall himself).81 I think
that Restall included this section in his paper because he realized that he needs a justification of LK
external to his pragmatical bilateral interpretation. In this way ñ has the role of bridging entailment
and speech acts, that is it describes which states are incoherent based on which derivations are valid.
Nevertheless, according to this interpretation, assertion/denial reading of sequents can not have a
justificatory role. It is just something that comes later, on the applicative side. This clashes with
what Restall says about the basic properties of coherence of states that justify the structural rules
of sequent calculus. Moreover, it is not clear how to interpret his justification of multiple-conclusion
(that, let us repeat, does not use bilateral speech acts) without using assertion, that is without a
unilateral theory of speech acts, while of course a justification that uses assertion clashes with the
bilateral approach adopted on the pragmatical part and so is not available. As a conclusion, it seems
that regarding bilateralism and multiple-conclusion Restall has a foot in both camps, but that they
can hardly coexist.

To sum up, Restall searches for a justification of classical logic, and he tries to obtain it using
a bilateral theory of speech acts. This bilateral theory works fine from a pragmatical point of view,
but it can not justify classical logic, because it is not a theory of deductive usage and so falls under
Rumfitt’s criticism. In order to have such a justification Restall has to rely on assertive multiple-
conclusion reasoning, that is indeed what he proposes. In this way, he has a system in which sentences
are used, instead of just mentioned, and used deductively, but nevertheless this theory of multiple-
conclusion is independent of (if not even in contradiction with) his theory of sequent calculi.82

This is not a knockout argument against Restall’s version of antirealism, but it is nonetheless a
very general result. We already saw that his approach is very different from proof-theoretic semantics,
now we can assert that it even clashes with the meaning-as-use dictum, since there is no obvious way
of reconstructing usage from his interpretation of sequent calculus rules, or at least not a deductive
usage. On the other side, if we want to accept his justification of proof by cases in a unilateral
approach to proof-theoretic semantics, it is not clear which role his bilateral pragmatic theory could

78[Restall, 2005], p. 198.
79See as an example page 248 for the classical situation.
80Seen in the previous section 2.3
81That the example of proof provided by Restall is not interpreted according to bilateralism is obvious from the fact

that he uses a disjunctive reading of succedent, while according to his bilateralism it should be rejective and conjunctive:
the denial of each sentence in it.

82A similar criticism to Restall’s version of bilateralism can be found also in [Steinberger, 2011b], pp. 349-353.
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A,Γ B,∆
^I

A^B,Γ,∆ A^B,Γ

rAsrBs

...
∆
^E

∆,Γ

A,Γ
_I

A_B,Γ A_B,Γ

rAs

...
∆

rBs

...
∆
_E

∆,Γ

B,Γ
_I

A_B,Γ

rAs

...
B,Γ

Ą I
A Ą B,Γ

K,∆
KE

A,∆ A Ą B,Γ A,Θ

rBs

...
∆
Ą E

Γ,∆,Θ

Table 2.4: MAMCNK

play. Moreover, his discussion of this example is far from constituting a complete proof-theoretic
reconstruction. Let us now move on to the unilateral multiple-conclusion approach tout court.

2.4.2 Natural deduction and the objections to multiple conclusions

While neither Hacking nor Restall formulates an explicit system of natural deduction with multiple
conclusions, a multiple-conclusion natural deduction system suitable for formalizing classical logic
has been proposed in [Boričić, 1985] and later scrutinized in [Read, 2000]. We will call this system
MAMCNK (table 2.4), since it is a multiple-assumption (MA) and multiple-conclusion (MC) nat-
ural deduction system (N) for classical logic (K). Boričić proved both normalizability and separability
for this system in his paper, but he did not focus on proof-theoretic semantics. His observations were
mostly devoted to the formal result. Read defended this system, proposing a revision based on his idea
of general-elimination harmony. Although we do not consider this reformulation of harmony (based
on the idea that E-rules should be functions of the corresponding I-rules), we consider Read’s version
of the calculus.83

While already Prawitz was able to prove normalizability for a fragment of his classical system
and we saw that this result can be extended to the whole system,84 Read manages to prove harmony
as well, that is MAMCNK is obtained without abandoning the distinction between I and E-rules,
while Prawitz’s classical rule of absurdity is neither an I nor an E-rule. Moreover, Prawitz’s system
lacks separability, contrary to Boričić-Read’s system that is even strongly separable. As an example,
Peirce’s law can be proved using only Ą-rules (and structural rules, of course), and so its truth depends
only on the meaning of this logical term:

rpA Ą Bq Ą As2

rAs1
Weak

A,B
ĄI

A,A Ą B
ĄE

A,A
Contr

A
ĄI2

ppA Ą Bq Ą Aq Ą A

In a derivation of MAMCNK, sentences are used rather than mentioned, so we can avoid Rum-
fitt’s objection about sequent calculus, and we just saw that it is both (strongly) separable and
harmonious. Arguably, our standard definition of validity can be extended to cover also this system.85

As a consequence, if there are no more objections to the usage of multiple-conclusion, we have found
a proof-theoretic justification of classical logic.

Unfortunately, there are a lot of objections to multiple-conclusion logics, or at least to their usage
in proof-theoretic semantics. While I believe that the strength of some of these objections has been
overstated, there are anyway some of them that are strong enough to call in question the entire
multiple-conclusion framework (and maybe even more, as we will see in the next section). We will
consider three main objections: lack of usage of multiple-conclusion arguments in everyday reasoning;
lack of constructivity due to multiple-conclusion logic; circularity.

83However, the distinction between the two systems is irrelevant for our discussion.
84See note 11.
85We could speculate that canonicity should be redefined as asking a derivation that ends with an introduction rule

possibly followed by some structural rules. Indeed we will see something similar in section 3.3.3. Already this request
could open the door to some objections; anyway, since there are other, even bigger problems, we will neglect to discuss
this issue.
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Lack of common usage

There should be common usage of multiple conclusions? According to this first objection,
even though it is possible to give a natural deduction system for multiple-conclusion logic, this is
nonetheless severed from our everyday argumentative practice, and so these formal systems do not
give meaning to logical terms. The base assumption of this argument is that a connection with
our usage – not only usage in general – is needed if we want a real theory of meaning. While the
observation that multiple conclusions are rare in practice and that this fact is problematic for a theory
of meaning is common in writings of proof-theoretic semantics, the fine structure of the argument is
usually neglected.86 One of the clearer exposition is given by Steinberger:87

“Only those deductive systems that answer to the use we put our logical vocabulary to
fit the bill. After all, it is the practice represented, not the formalism as such, that
confers meanings. Therefore, the formalism is of meaning-theoretic significance and hence
of interest to the inferentialist only if it succeeds in capturing (in a perhaps idealised form)
the relevant meaning-constituting features of our practice.”

Steinberger calls ‘Principle of answerability’ this position, and clarifies that it can lead to different
consequences, depending on which kinds of idealization is considered acceptable and on how the
descriptive and the normative approaches of proof-theoretic semantics are balanced.

If Steinberger’s argument is the reason why proof-theoretic semanticists are in general worried
about the (lack of) common usage of multiple conclusions, I think that they should drop their concerns.
Indeed, while it is surely true that it is the usage and not the formalism that gives meaning to logical
terms, the shift from usage to common usage is a non sequitur. Why should an unusual usage of
language be unable to give meaning to terms? This looks like an unjustified radicalization of the
correct objection raised by Rumfitt against sequent calculus: we need a theory of usage, but do we
need a theory of common usage?

Moreover, while Steinberger himself acknowledges that proof-theoretic semantics has also a nor-
mative nature, he stresses that the only way of justifying multiple-conclusion logic is by adopting
it as an idealization of common reasoning. I wonder why the adoption of intuitionistic logic could
work as a reform of common usage while we underestimate the adoption of multiple-conclusion as a
mere idealization. Until we find a justification of classical logic, we propose a revision of our ordinary
argumentative practice that consists in the adoption of intuitionistic logic, but when we discover a
justification of classical logic that uses multiple-conclusion we propose a further revision by adopting
it – of course checking the standard requirements of proof-theoretic semantics. I do not see any rea-
son not to consider multiple-conclusion logic as at least a candidate revision, and I believe that this
connection with ordinary deductive practice is more than enough.

There is another way of interpreting the ask for common usage: maybe the problem is not the lack
of meaning, but the impossibility of understanding the practice that we are describing. Indeed while
a set of rules is enough to establish a practice, and so arguably to give meaning to a logical term, in
order to understand what is the purpose of this practice, we need to be able to connect it with the
rest of our linguistic behaviour. In order to exemplify this concept, Dummett evaluates the following
situation.88 Let us consider the rule

A ÞÑ pB _ Cq

pA ÞÑ Bq _ pA ÞÑ Cq

It is not intuitively valid if we want to interpret ÞÑ as a counterfactual conditional. Nonetheless, a
speaker could adopt it for this usage and decide to accord his linguistic behaviour consequently, and
we could not blame him for anything. Of course, we are assuming that the speaker is capable of
harmonising this change with the rest of his linguistic behaviour, that is that we can not reject the
adoption of this rule by using some proof-theoretic requirements.

The only big problem of this situation is that it could be completely unclear to the listener what is
the point of this change of practice. Obviously, the meaning of counterfactual conditional is changed,
the problem is that it is not clear the way in which it is changed. We know (enough) what is the goal
of this linguistic instrument in our everyday practice, but we have no idea of the reasons why this
speaker decided to adopt this new rule. If he manages to explain how this new kind of connective is
connected with everyday life, we could understand his move.

As Dummett stresses the listener is in the same situation of someone that, learning a new game,
has understood everything about legitimate and illegitimate moves, but nothing about the strategy

86[Dummett, 1991], p. 41 and [Rumfitt, 2008], p. 79 are two examples.
87[Steinberger, 2011b], p. 335.
88[Dummett, 1991], p. 206.
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or the goal of it.89 In both cases the lack of understanding is real, it is not just a feeling. The only
difference between the two situations is that the goal of a game is internal to the game itself, while
logic has (also) purposes that are external both to the logical fragment of the language and to the
language as a whole.90 So we could decide to define arbitrarily the meaning of logical terms using sets
of rules, but this could lead to logical systems that we do not know how to use. And even well behaved
sets of rules could define terms that are essentially unintelligible for us. In summary, pointless usage
gives at most uninteresting meaning.

This reformulation of the objection is much more interesting in general. Indeed what is the point
in establishing that a set of rules for a term suits all the criteria of proof-theoretic semantics, if the
meaning that it gives to the term is unintelligible anyway? Nonetheless, while this is a really important
point in inferentialism, I do not think that it is relevant here. Indeed multiple-conclusion logic is not so
departed from our common linguistic practice to confuse us about the meaning of the logical constant
that it characterises. On the contrary, we could argue that, while it is not very common, it is a smaller
departure from common practice than the adoption of intuitionistic logic. The point of this alleged
revision of our practice is neither obscure nor inexplicable.

In conclusion, although multiple conclusions are arguably a detachment from standard argumenta-
tive practice, they are not so exotic to be unintelligible. On the contrary, we will see in a later section
that it is true the opposite claim: their meaning is too near to actual practice. So the argument that
exploits the rarity of multiple conclusions “in nature” is without teeth.

Is there common usage of multiple conclusions? Anyway, let us give a look at the debate about
the usage of multiple conclusions in everyday reasoning. Even though we argued that their absence
from our practices would not constitute a valid reason to reject them in proof-theoretic semantics, this
issue will be useful later. It can not be denied that multiple-conclusion reasoning is not very common
in everyday arguments. Indeed arguments usually have more premisses and just one conclusion.
Nonetheless, to be completely honest, the reasoning is displayed linearly in our natural language, so
the tree structure of arguments is just a reconstruction, although very natural.91 As a consequence,
as there are multiple premises hidden (not very well) in the linear structure of arguments we could
argue that there are also multiple conclusions hidden (very well) somewhere in the same structure.

Indeed some authors have proposed that the most natural formulation of proof by cases uses
multiple conclusions. As an example, [Shoesmith and Smiley, 1978] proposes this formulation:92

A1 _A2 _ ¨ ¨ ¨ _An

A1

...
B

A2

...
B

¨ ¨ ¨ An

...
B

That is we evaluate different exhaustive alternatives A1_A2_¨ ¨ ¨_An and we find out that the same
conclusion can be derived from each of them, so we conclude it.

While this formulation is in general considered very natural, it is frequently objected that it deploys
only a weakened form of multiple conclusions. Indeed while we have more than one conclusion, they
are all occurrences of the same formula. Rumfitt indeed argues that for this reason proof by cases can
not be regarded as a real example of multiple conclusions.93 Steinberger pushes to the limit this line
of thought and argues that the real form of proof by cases is standard _E.94 Indeed since we have
more conclusions of the same form, we can just conclude the derivation with a single token of this
formula.

Of course, the substitution of multiple-conclusion with _E makes impossible to justify classical
logic, so Steinberger’s proposal entails that proof by cases is not enough to escape from constructivity.
Nevertheless Greg Restall proposes an example of proof by cases that seems to derive a purely classical
logical consequence, that is @xpF pxq _Gpxqq $ @xF pxq _ DxGpxq. The proof he proposes is this:95

89[Dummett, 1991], p. 208.
90[Dummett, 1991], pp. 204-205.
91I find interesting that even Gentzen, that is the main responsible for the widespread adoption of branching formula-

tions of deduction, acknowledged the essential linearity of reasoning; see [von Plato, 2005], pp. 681-682 for his comment
to Jaskowski’s linear alternative to natural deduction.

92P. 4.
93[Rumfitt, 2008], p. 79.
94Steinberger [2011b], pp. 341-347.
95Restall uses sequent calculus instead of natural deduction but, in this context, he refers to its unilateral multiple-

conclusion reading, so we can use natural deduction instead. See [Restall, 2005].
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@xpF pxq _Gpxqq

F paq _Gpaq

F paq, Gpaq

F paq, DxGpxq

@xF pxq, DxGpxq

@xF pxq _ DxGpxq

It is surely a multiple-conclusion proof, but is it an example of proof by cases? According to Restall,
this formalization corresponds to the real structure of arguments like the following:

“Suppose everyone is either happy or tired. Choose a person. It follows that this person
is either happy or tired. There are two cases. Case (i) this person is happy. Case (ii) this
person is tired, and as a result someone is tired. As a result, either this person is happy or
someone (namely that person) is tired. But the person we chose was arbitrary, so either
everyone is happy or someone is tired.”

Steinberger objects that the last step of this derivation occurs outside the proof by cases and so
that the correct formalization is just:96

@xpF pxq _Gpxqq

F paq _Gpaq

rF paqs
1

F paq _ DxGpxq

rGpaqs
1

DxGpxq

F paq _ DxGpxq
_E1

F paq _ DxGpxq

@ypF pyq _ DxGpxqq

That is the purely classical consequence can not be derived using only standard _E instead of multiple
conclusions, and indeed it is not acceptable according to Steinberger’s reconstruction.

To be completely honest, it is not clear whether in the natural language reasoning that we are
trying to formalize the last step occurs inside the proof by cases or immediately outside it. So we could
be in doubt about which one of the two formalizations is the correct one. Nonetheless, we also have
to acknowledge that the classical consequence is usually regarded as correct by competent speakers,
and we have to take this into account. That is, while Restall’s explanation of proof by cases explains
why we regard both @xpF pxq_Gpxqq $ @xF pxq_DxGpxq and @xpF pxq_Gpxqq $ @ypF pyq_DxGpxqq
as valid, Steinberger’s explanation can not explain why we regards the first as valid, and so proposes
a revision. If there are no other objections to the multiple-conclusion interpretation of proof by cases,
then the fact that it “saves the phenomena”, while its _E interpretation does not, speaks in favour
of it.97

So there seem to be reasons to formalize proof by cases with multiple conclusions. Nonetheless, if
this is the only example of multiple-conclusion arguments that we can find in our everyday inferential
practice, there is still Rumfitt’s objection: in proof by cases the conclusions have all the same form,
so this is “at best a degenerate form of multiple-conclusion argument, for the different conclusions are
all the same”.98 Restall correctly answers to Rumfitt that multiplicity of occurrences is enough to
have multiple conclusions, like it is enough to have multiple assumptions. Indeed the inference

A A
^I

A^A

asks for two premises, although of the same shape, in order to derive the conclusion. If we do not
recognise the status of multiplicity to these assumptions, then we need a special rule to derive A^A
from a single occurrence of A, but there are no reasons to impose such a revision. In the same way, a
derivation that ends with two or more occurrences of a formula has multiple conclusions.

Nonetheless, even acknowledging the multiplicity of the conclusions of proof by cases, it is at least
strange that the only recognised application of multiple-conclusion arguments in natural reasoning

96[Steinberger, 2011b], pp. 343-344.
97Steinberger tries to recast his argument arguing that what Restall really needs in order to prove @xpF pxq_Gpxqq $

@xF pxq _ DxGpxq is not proof by cases, but the unjustified introduction of @ inside a disjunction; see [Steinberger,
2011b], p. 344. This objection relies on the author’s formulation of proof by cases and is unfair without an independent
rejection of multiple conclusions, since it focuses on a property that is a prerogative of multiple conclusions. So it can
be rejected together with Steinberger’s reconstruction of proof by cases, until we find good reasons to object to multiple
conclusions. On the other side, we will see that it regains most of its relevance as soon as we find good arguments
against them.

98Quoting [Shoesmith and Smiley, 1978], p. 5.
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has this strange form. For this reason, Restall proposes a strategy to find derivations with multiple
conclusions of different forms: it is sufficient to truncate the derivation at some point before arriving
at the conclusions of the same form. Restall explains his idea using the following argument:

“Suppose A ^ pB _ Cq. Then it follows that A. It follows that B _ C. So, we have two
cases: (i) B, and (ii) C. [1] Consider case (i). Here, B, and we already have A, so A^B.
Consider case (ii). Here, C, and we already have A, so A ^ C. [2]. Back in case (i), it
follows that pA^Bq _ pA^Cq. In (ii), it also follows that pA^Bq _ pA^Cq [3]. So, we
conclude, pA^Bq _ pA^ Cq.”

If, instead of deriving the single conclusion pA^Bq _ pA^Cq or stopping the derivation at point [3]
where we have two conclusions of the same form, we stop the derivation at point [2], then we have a
derivation that ends with two conclusions of different forms: one is A ^ B and the other is A ^ C.
So Restall seems to suggest that already proofs by cases contain multiple conclusions with different
forms hidden inside them.99

It is interesting to note that Steinberger’s proposal of a single-conclusion reformulation works fine
for the external multiple conclusions with the same form. What we really need are the intermediate
multiple conclusions with different forms that, as Restall has shown, lay inside proof by cases. Indeed
Restall’s example of the derivation of pA^Bq_pA^Cq from A^pB_Cq ends with a single conclusion,
obtained by what seems to be an application of _E. So it seems that in common reasoning multiple
conclusions are always contracted in just one conclusion, at the end of derivations, and so they can
occur only as intermediate conclusions. But this situation, of course, needs an explanation: why we
can not have multiple conclusions at the end of the derivation? If they are acceptable elements in an
argument, we should have derivations that just end with them.

I think that there is a naturalistic explanation of why this is the case and that this is indepen-
dent of meaning theoretic considerations. Indeed we have to consider the fact that our language is
primarily oral, and there are some bad consequences in allowing multiple conclusions to occur outside
an argument. As an example, as observed by Gareth Evans, if multiple-conclusion exposes a class
of collectively exhaustive possibilities, the speech act of the assertion of them is not complete until
we have stated all of them. So when we use multiple conclusions we should find a way to advise our
hearer when the statement is complete. While we could argue that the same can be said for multi-
ple premises, the situation is not symmetric. Indeed multiple premises are naturally closed by the
inference step that they precede, while the borders of conclusions are much less clear, especially for
non-intermediate ones. Moreover, while all the partial expressions of a multiple assumption are true, if
the complete expression does, the partial expressions of a multiple conclusion are not only incomplete,
but also possibly false. This follows trivially from the conjunctive nature of multiple assumptions and
the disjunctive nature of multiple conclusions.100

The previous naturalistic reasons explain why multiple conclusions are less practical than multiple
assumptions. I think that in spoken language there is also another stronger reason why it is not
convenient to have both multiple assumptions and multiple conclusions. That is it is preferable to
have only one common usage of multiple assertions, since it is obviously problematic to have usages
of multiple assertions that are ambiguous between a conjunctive and a disjunctive reading. Indeed we
could be tempted to “store in our memory” a multiple conclusion and then use it as an assumption for
a new argument, but this leads to invalid proof steps, going from a disjunctive reading of A1, . . . , An

to a conjunctive one. Of course, nothing prevents us from using as a new assumption a multiple
assertion obtained as the conclusion of a derivation, but we need to remember that it was established
disjunctively. If this is the situation, it is far better to have just one standard interpretation of multiple
assertions in our practice. And since we saw that conjunctive multiple assumptions are easier to use,
the adoption of them is far from mysterious.

All these problems are relevant only for spoken language. Indeed, in a written derivation the
borders of a conclusion constituted by multiple sentences are always clear, and we do not have any
problem at indexing sets of sentences that are disjunctively or conjunctively derived. This is something
practically inconvenient in spoken languages, and it contributes to explaining why multiple-conclusion
is not normally used. Arguably, the second problem is relevant in general, so maybe also in formal
systems we want multiple conclusions to occur only in intermediate positions. Nonetheless, we fully
explained the reasons why multiple conclusions occur only there in everyday language, and they have

99Both arguments of Restall against Rumfitt can be found in Restall [2009a].
100These observations are reported in [Shoesmith and Smiley, 1978], p. 5-6. Steinberger interprets this argument as a

reason to reject multiple conclusions in proof-theoretic semantics but I think that, on the contrary, it works far better
as an explanation of why they are so rare in common practice, although they are acceptable in it. Also Shoesmith and
Smiley seem to agree on my naturalistic interpretation of Evans’ argument.
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nothing to do with theory of meaning. So we have no reason to be suspicious about the strange way
in which multiple conclusions are used in everyday argumentative practice.

To sum up, the existence of multiple conclusions in everyday reasoning is not indispensable for their
acceptance in proof-theoretic semantics, but it is welcomed anyway. Indeed it excludes completely
the possibility that the appeal to such a practice gives an unintelligible meaning to logical terms.
There are good reasons to believe that we use multiple conclusions in proof by cases, but that for
limits imposed by the oral medium we use them only for intermediate conclusions. Nonetheless, those
limits are irrelevant for a theory of meaning, so we have no reason to reject multiple conclusions in
proof-theoretic semantics, or at least we have no reason based on actual argumentative practice.

Lack of constructivity

Antirealism and constructivism Another common criticism to multiple conclusions is that they
lead to non-constructivity of the logical system.101 Of course, this objection applies to every attempt
of saving classical logic, so we should deal with it once and for all: should every system used for
proof-theoretic semantics be constructive?

I think that constructivism should not be an assumption for proof-theoretic semantics, but at
most a conclusion. Indeed, while a lot of proof-theoretic semanticists and the traditional intuitionists
ended up endorsing similar positions about many issues, first of all the preference of intuitionistic over
classical logic, their philosophical reasons are very different in general. A key example is given by
language: while traditional intuitionists like Brouwer searched a foundation of mathematics and logic
independent of language, Dummett’s philosophy of logic is rooted in linguistic and meaning-theoretic
issues.

Epistemic truth and tertium non datur However, the general verificationist approach endorsed
in antirealism102 seems to be at odds with a justification of tertium non datur. Indeed if A _  A is
a logical theorem, then the utterance of all its exemplifications is always justified, and so there needs
to be always a (possible) verification of a sentence or of its negation. But this result asks for a very
idealised notion of verification, which makes essentially pointless the verificationist approach. In this
work, I did not discuss thoroughly the general approach of antirealism to meaning, but I just focused
on logical terms. Nonetheless, we need to deal at least a little with this issue.

First of all, let us consider how the constructivist reading of disjunction influences the understand-
ing of tertium non datur. According to the constructivist interpretation of disjunction, in order to
prove A_ A we need to know which one of A and its negation is true. That is we can not have a proof
of a disjunction without a proof of one of the disjuncts. So according to the constructivist reading of
disjunction, it would be problematic for the verificationist approach to be able to prove p_ p for every
sentence p, since this would require a proof of p or of  p for every sentence, something that we can
not do in general. Nonetheless, the proof of tertium non datur regards classical disjunction, so that in
order to prove p_ p it is enough to prove that at least one of the two must be verifiable. That is we
do not need to be able to prove one of the two disjuncts in order to prove the disjunction. Arguably,
this is not enough to justify the acceptance of A_ A in general, but at least makes possible for this
logical law to cohere with a verificationist approach to meaning. Indeed classical disjunction considers
a gap between the proof of a disjunction and a proof of one of the disjuncts, and so legitimises our
position in which we have a proof of all the exemplifications of A _  A without having a proof of
most of the exemplifications of the disjuncts. Moreover, the gap can be so big that a justification of
one of the disjuncts is not required in general, not even in future or purely possible knowledge.

Unfortunately, there are reasons to believe that, while this consideration is enough to solve the
apparent disagreement between tertium non datur and an epistemic notion of truth, it is not enough to
solve the disagreement between tertium non datur and the particular kind of epistemic notion of truth
used in proof-theoretic semantics. Indeed while the classical conception of disjunction requires nothing
about the possibility of proving the disjuncts in order to prove their disjunction, proof-theoretic
semantics does this, via its fundamental assumption (assumption 1.2.1). According to this assumption,
if a disjunction is justified, then there ought to be a justification of it that ends with an application of
_I. But for this to be the case there must be a derivation of one of the two disjuncts (at least taking
for granted the shape of this rule). So it seems that a proof-theoretical justification of tertium non
datur requires the warrant of at least one disjunct for each of their instances, independently on the

101As an example [Tennant, 1997], p. 320 (where the author expresses concern also for the absence of multiple conclu-
sions in everyday reasoning, the issue we just discussed).
102Integrated by a pragmatist approach connected via harmony, as explained in [Dummett, 1991].
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intuitionistic reading of disjunction. That is we need to endorse strong decidability in order to justify
it. 103

Normalization Let us now consider another issue related to constructivism: the nature of the
reduction procedure used to define validity. The reduction steps for natural deduction derivations
correspond to those for simply typed λ-calculus, which is a formal system that models computation.
The well-known correspondence is called the Curry-Howard isomorphism, and we will not discuss it
in details.104 However, we need to consider some consequences of this relation between one of the
main properties used in proof-theoretic semantics and computability. As an example, the ambiguity
of this relation leads Prawitz to ask for strong normalization in order to have what he calls “strong
validity”. As we already stressed in note 50, we reject this strengthened version of validity, following
the evaluation of Schroeder-Heister. We also propose a more general criticism: since the connection
between harmony and computation has been greatly exaggerated, maybe the appeal to normalization
in the definition of validity (definition 1.2.8 is unessential, and the appeal to the existence of normal
form is more appropriate. What I propose is the following reformulation:

Definition 2.4.1 (Validity in B). A derivation D is valid in B iff either:

1. D is a closed derivation of an atomic conclusion C and there is a closed normal proof of the
same conclusion C carried on in B; or

2. D is a closed derivation of a non-atomic conclusion C and there is a closed normal proof of the
same conclusion C that is canonical; or

3. D is an open derivation and every closure of D, obtained by replacing open assumptions by
closed derivations for the same sentences that are valid in B, is valid in B.

The reason behind this change is essentially that validity should ask for a well-grounded relation
of logical consequence. Indeed, let us just remember that this kind of definition was needed essentially
to solve the “circularity” in the definitions of ĄI and of valid derivation, by exploiting its inductive
formulation.105 Now, it seems that the existence of normal form is completely sufficient to carry on
this duty. Since there is a normal proof, the consequence is justified from the point of view of meaning;
nothing asks for a decidable method for finding this normal proof. That it can be found in some way
should be enough.

I suspect that the only good reason why normalization was used in first place in this definition
is because of the constructivist scepticism about pure-existence theorems.106 Nonetheless, if this is
the reason, the ask for normalization lacks impartiality. Although it is understandable the ask for a
decidable procedure to find an example of normal derivation when we are searching for a justification
of intuitionistic logic, why should we not be satisfied with purely existential results when we are
dealing with the justification of classical logic?

Circularity

For logical conversion The consideration that ends the previous paragraph is usually reversed in
the literature of proof-theoretic semantics, where multiple-conclusion logic is criticized because ap-
plies a classical disjunctive reading to multiple conclusions. The request for impartiality comes from
Dummett’s belief that proof-theoretic semantics should be the main tool to solve logical disagree-
ments. Dummett’s idea seems to be that in order for this application to be fruitful we can not use
controversial instruments in the framework of the theory, and multiple conclusions interpreted using
classical disjunction are controversial (at least in the debate between classicists and intuitionists107).
So, since multiple conclusions are not impartial, they can be used to justify classical logic only in a
circular way.

According to Steinberger, the structure of Dummett’s argument is the following:108

103I must confess that I find it much harder to answer objections to classical logic based on verificationism than
objections based on the theory of meaning. Indeed, except for bare coherence, it does not seem easy to combine
verificationism with classical logic. Nonetheless, what we want to stress here is that proof-theoretic semantics should
not exclude classical logic, that is that if there are good arguments against tertium non datur in antirealism they lay
outside the pure logical framework.
104See [Sørensen and Urzyczyn, 2006].
105See section 1.2.2.
106Of course the connections between harmony and computability, though they are very interesting, are not a good

reason.
107That according to Dummett correspond to the debate between realists and antirealists, although our project of

developing an antirealist theory of meaning for classical logic messes up this interpretation.
108[Steinberger, 2011b], p. 346, that refers to [Dummett, 1991], p. 187.
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1. The discussion between realists and antirealists must rest on a clear specification of the meaning
of logical terms, so that they do not talk past each other;

2. The specification must occur in a proof-theoretic semantics framework that all the parties agree
on;

3. In order to specify the meaning of multiple conclusions we have to rely on that of classical
disjunction;

4. So we have to rely on a prior understanding of classical disjunction, in order to explain the
meaning of this connective using multiple conclusions, and that is useless.

Of course, the accuse of circularity in the justification of a logical system is not something new.
On the contrary, it is not clear how a non-circular justification of logic could even be possible: are
we not going to use arguments in the justification, after all? Dummett interestingly observes that the
only kind of circularity that we can not escape with the justification of logic is109

“not the ordinary gross circularity that consists of including the conclusion to be reached
among the initial premisses of the argument. We have some argument that purports to
arrive at the conclusion that such-and-such a logical law is valid; and the charge is not
that this argument must include among its premisses the statement that that logical law
is valid, but only that at least one of the inferential steps in the argument must be taken
in accordance with that law. We may call this a ‘pragmatic’ circularity.”

We run into this kind of circularity also when we try to justify intuitionistic logic, of course, but
Dummett smartly observes that in the debate between classical and intuitionist logicians – that
is what he is mostly interested in –, intuitionistic logical principles are not really controversial, so
arguably they are not in need of a justification in this context.

Nevertheless, the pragmatic circularity of any justification of intuitionistic logic could be problem-
atic for the intuitionist himself. That is, even if his principles had not been debated by the classical
logician, they would still have been in need of a non-circular justification. Indeed justification is not
only needed in the debate between logicians that disagree about which logic is the right logic, but it
is needed in general.

Nonetheless according to Dummett, pragmatic circularity is problematic only when we try to
convert someone that is genuinely sceptic about the validity of a logical principle. When we are only
searching an explanation for a logical principle that we consider valid, pragmatic circularity is fine:110

“If the justification is intended as suasive, then the pragmatic circularity will defeat its
principal objective. That is to say, if the justification is addressed to someone who gen-
uinely doubts whether the law is valid, and is intended to persuade him that it is, it will
fail of its purpose r. . .s A gross circularity is as damaging to an explanatory argument as
to a suasive one; but a pragmatic circularity need do it no harm at all.”

The reason why pragmatic circularity is less detrimental than gross circularity is that while we can not
fail when we search a grossly circular justification of a logical principle, we can fail when we search
for a pragmatically circular justification of it. Indeed assuming the validity of tertium non datur,
we already have a proof of its validity, while the use of purely classical principles in our arguments
about validity does not lead necessarily to a proof of their validity. As an example in order to prove
the completeness of first order intuitionistic logic with respect to Kripke structures, we need to use
classical logic at the metalevel, but this does not make possible to prove the validity of tertium non
datur in those structures.111 According to Dummett, the possibility of failure means that our success
in justifying a logical principle can not be completely pointless, so pragmatical circularity does not
invalidate at least explicative justification.112

Arguably, if pragmatic circularity is not a problem for the explicatory justification of intuitionistic
logic, then it is not a problem for the justification of classical logic either. So we have two logics
that can be justified in an explanatory way, that is a classical logician can explain why he believes in
classical principles and an intuitionistic logician can explain why he believes in intuitionistic principles.
However, when they speak to each other, pragmatical circularity becomes unacceptable and classical

109[Dummett, 1991], p. 202.
110[Dummett, 1991], p. 202.
111[Dummett, 2000], p. 154.
112It could be useful to remind that Wittgenstein’s main objection against Private Language is that it does not leave

open the possibility of a failure in following a rule. See paragraph 202 of [Wittgenstein, 1958] “r. . .s it is not possible to
obey a rule ’privately’: otherwise thinking one was obeying a rule would be the same thing as obeying it”.

54



logician cannot convert the intuitionistic logician. The intuitionistic logician, on the contrary, does
not need to convince the other speaker of the validity of his principles, so his pragmatical circularity
is not problematic even in his debate with him.

We could pose at least two objections to this argument:

• First of all, while Dummett is interested essentially in the debate between classical and intu-
itionistic logic, there are a lot of other systems, and some of them are endorsed by philosophers
as the one true logic. According to Dummett’s analysis, the disagreement between philosophers
seems to be always solved downgrading the strength of the system. That is if a speaker endorses
the system S and another speaker endorses the system S 1, such that S 1 proves all the logical
consequences provable in S, and they give pragmatically circular justifications of their systems,
then the circular justification of the weaker system S is shared also by the speaker that endorses
S 1, so in the disagreement the weaker system seems to be preferable. This is not so surprising,
but it hardly counts as a good reason to weaken our logical beliefs, especially if we take into
consideration very weak logical systems, and there seem to be no non ad hoc reasons not to do
that. In brief, the cost of a prudence criterion could be greater than Dummett acknowledges.

• We want a logical system that is justified, and while the conversion of a logical heretic is some-
thing relevant to justification, it can not be the full story, nor probably it is the core of the
issue.113 We started this section searching for impartiality, but the issue here is not impartiality,
it is how to convince someone we disagree with. The choice of the weakest system is not impar-
tial, it is only prudent (and prudence is not impartial in any way), as we saw in the previous
point. I think that while disagreement can sometimes be solved by considerations regarding
proof-theoretic semantics – for example when a philosopher adopts a system of logic that can
not be described by a well-behaved system –, we can not expect this to be the paramount case
of logical disagreement, nor the paramount kind of application of proof-theoretic semantics. As
an example, this procedure seems to be useless to convert a philosopher that endorses a system
that is well behaved according to his standards. He could decide to downgrade his logical beliefs
to share a common ground with some other logicians, but he is not obliged to do so by purely
meaning theoretical considerations. That is, let us take for granted for a moment that there is a
harmonious system for classical logic in which it is possible to define validity, but that both har-
mony and validity asks for multiple conclusions with a classical disjunctive reading and purely
existential results. Could we convince a classical proof-theoretic semanticist to step down from
his endorsement by the existence of a constructivist justification of an intuitionistic system?
Maybe yes, but not using proof-theoretic semantics, that is only by external considerations.
Vice-versa it would be hard to convince the intuitionist to adopt a classical system, but only
if he has external (to proof-theoretic semantics, not to constructivism) reasons to be sceptical
of purely existential results and/or of classical disjunction. Maybe in those cases a pluralist
approach could be more useful.114

Between comma and disjunction So the main problem in the justification of classical logic can be
neither the difficulty of changing the mind of a non-classical logician (since this is not a fundamental
issue for justification), nor pragmatic circularity (since this is a kind of circularity that we always
obtain when we try to justify logical principles). I will argue that Dummett correctly rejects the
justification of classical logic via multiple conclusions because of gross circularity, and not because
of pragmatical circularity, and so that his argument is mischaracterized by Steinberger’s description.
Indeed let us consider directly the text that Steinberger is interpreting:115

“Sequents with two or more sentences in the succedent, by contrast, have no straightfor-
wardly intelligible meaning, explicable without recourse to any logical constant. Asserting
A and asserting B is tantamount to asserting x A and B y; so, although the sentences in
the antecedent of a sequent are in a sense conjunctively connected, we can understand the
significance of a sequent with more than one sentence in the antecedent without having to
know the meaning of ‘and’. But, in a succedent comprising more than one sentence, the
sentences are connected disjunctively; and it is not possible to grasp the sense of such a
connection otherwise than by learning the meaning of the constant ‘or’. A sequent of the

113Indeed also Dummett’s remarks at the end of the paragraph are slightly pessimistic from this point of view;
[Dummett, 1991], p. 204.
114We will say more about this in chapter 4. Crispin Wright wonders whether pragmatical circularity should really be

a problem for the conversion of a logical heretic and suggests a negative answer in [Wright, 2018], note 10. Nonetheless,
he develops this position in a very different way from ours.
115[Dummett, 1991], p. 187.
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form A : B, C cannot be explained by saying, ‘If you have asserted A, you may with equal
right assert either B or C’, for that would imply that you can assert either one at your
choice; and the formulation, ‘If you have asserted A, then either you may assert B or you
may assert C’, does not entitle you to make any further assertion until you learn which of
them you may assert. A general explanation of this form of sequent becomes possible only
when we can say, ‘Having asserted A, you are thereby entitled to assert x A or B y”’

Accordingly, this passage can be read as criticizing multiple conclusions on the base that their
application to explain disjunction is (pragmatically) circular, but this would lead to problems only
for non-classical logicians that evaluate the argument. What Dummett is arguing, in my opinion,
is something stronger, that is that the definition of classical disjunction that uses comma is grossly
circular, since we are able to prove tertium non datur for disjunction just because we assume that
it holds for comma. Moreover, given the disjunctive reading of multiple conclusions, we can not fail
in proving tertium non datur for disjunction if we assume it for comma. This is a blatant case of
gross circularity rather than pragmatic circularity, so Steinberger’s interpretation based on logical
disagreement is misplaced.

We could wonder whether this kind of circularity is connected with circularity in meaning as
characterised in definition 1.1.9. Nonetheless while maybe right-comma ă _ since arguably right
comma is used to define the meaning of disjunction, the converse does not hold.116 Indeed the
meaning of the right comma is not introduced in the system using _, but it is just assumed since it
is part of the pre-logical framework of the system. This, of course, does not solve the problem since
we have an element of the system the meaning of which is erroneously supposed to be transparent.117

Moreover, the only solution to this lack could be to use _ in order to define the meaning of right-
comma, obtaining precisely what we were trying to escape: meaning circularity. In conclusion, while
gross circularity between multiple conclusions and disjunction is not equivalent to meaning circularity,
they are nonetheless deeply connected.

Albeit this argument works fine to reject multiple-conclusion justifications of classical logic, I think
that there is an easy way out to it. Indeed while with multiple-conclusion logic the properties that
enable the derivation of tertium non datur are postulated from the outside as part of the framework
of proof-theoretic semantics, we could reject multiple-conclusions and work directly with disjunction,
searching for a justification of the properties that enable this derivation. This is what Milne did in
his [Milne, 2002], where he proposes to substitute the I-rules of NJ for  and Ą with the following:

rAs

...
Bt_Du

ĄIMln
pA Ą Bqt_Du

rAs

...
D

 IMln
 A_D

Where the meaning of curly brackets is that the formula they contain may either be or not be present,
the rule remaining valid anyway.

It is not hard to prove that this extension leads to a complete classical system, what at most can
be controversial is its meaning-theoretical justification. First of all, let us observe that in this case
we do not have the same circularity problem observed by Dummett regarding the multiple-conclusion
solution. Indeed this time the validity of tertium non datur does not come as an obvious consequence of
the classical nature of some structural elements of the system the properties of which are just assumed.
This time the validity of tertium non datur depends on the behaviour of the logical constants and
the acceptability of this behaviour is evaluated in accordance with the usual proof-theoretic criteria.
Indeed while the meaning of comma is a starting point in proof-theoretic semantics, the meaning of
_ is given by its I-rule.

Milne’s solution is also capable of explaining why we can find examples of applications of multiple-
conclusion logic for intermediate conclusions of arguments but not multiple conclusions tout court
in natural reasoning.118 Multiple-conclusion arguments are just arguments in which a connective is
introduced inside a disjunction, so when we find it applied as the last step of an argument, we just
end with a disjunction as conclusion.

116I say ‘arguably’, because while we could use multiple conclusions in the classical I-rule for disjunction, we can
also maintain the standard I-rule, as we did for MAMCNK (table 2.4). Indeed as observed by Maehara, multiple
conclusions are essential only for  and Ą in order to obtain classical (propositional) logic (see [Takeuti, 1987], p. 52). In
this case, the situation is even worse for the classical proof-theoretic semanticist, since he should explain how multiple-
conclusions enable the derivation of purely classical principles without resorting to a postulated equivalence between
_ and classical disjunction. Shortly we will see a solution to this issue that passes through the rejection of multiple
conclusions and the direct application of disjunction in their place.
117We will see that this problem generalises to multiple assumptions.
118We dealt with this problem in paragraph 2.4.2.
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Are there good reasons to reject Milne’s rules? Dummett defined the following notions regarding
the structure of an I-rule:119

purity Only one logical constant figures in each rule;

simplicity Every logical constant which occurs in a rule, occurs as principal operator;

directness Discharged assumptions are completely general, rules do not specify some connectives
that must occur in them.

All the I-rules of NJ have all these properties, apart from that for  that is not pure, since K
occurs in it. Adopting Dummett’s theory of meaning, it is nonetheless possible to give a formulation
of intuitionistic logic that suits all these restrictions, since Dummett’s rule for negation120 is pure,
simple and direct. Unfortunately, we saw that his proposal is unacceptable from our point of view
since we imposed a non-circularity condition on the rules rather than on their applications.121 On
the contrary, some rules used to obtain the classical extension of NJ that we rejected violate some of
these properties. As an example, Prawitz’s rule of classical reductio is oblique (non direct) and double
negation elimination is pure (it deals only with negation) but not simple, since one of the negations
is not principal.

Nevertheless, these few pieces of evidence are not enough to decide about these requirements, and
indeed the standard way of dealing with negation in intuitionistic logic still remains passing through
K, using an impure rule. Indeed, despite their standard (usually silent) endorsement in proof-theoretic
semantics papers,122 these restrictions are explicitly rejected by Dummett himself, as pointed out from
Milne:123

“Reflection shows that this demand is exorbitant. An impure c-introduction rule will make
the understanding of c depend on the prior understanding of the other logical constants
figuring in the rule. Certainly we do not want such a relation of dependence to be cyclic;
but there would be nothing in principle objectionable if we could so order the logical
constants that the understanding of each depended only on the understanding of those
preceding it in the ordering.”

Dummett’s ideas about rejecting purity and simplicity seem to be different from Milne’s proposal,
since he only proposes the I -rules124

 A  B
 pA_Bq

 A
 pA^Bq

 B
 pA^Bq

A  B
 pA Ą Bq

A
  A

in which the outermost connective is the one introduced. So impure and non-simple rules could be
accepted but constants should nonetheless be introduced as the outermost connective. Nonetheless,
Dummett himself clarifies that, in conclusion, he considers complexity condition as the only criterion
that we should impose on I-rules, leaving open the possibility of Milne’s proposal. We will follow this
suggestion apart from the substitution of complexity condition with our non-circularity requirement.
Of course the endorsement of the weak version of separability, as opposed to its strong version, is just
a consequence of this approach.125

Steinberger objects to this kind of solutions that it betrays one of the fundamental tasks of logic:
that of “identifying the most basic forms of inference from which all other derived rules of inference
can be a consequence”.126 I think that this criticism is misplaced, since the lesson Milne is trying
to teach us is that there are not any more direct ways of obtaining classical results; we need to use
impure and non-simple I-rules in order to gain them. So we already found “the most basic forms of
inference” that are at play here, they are just not as simple as we are accustomed to.

Milne deals also with the ask for compositionality, which could be at odds with his rules. The
reason for being scared of this possibility is that as an example the meaning of pA Ą Bq _ C is not
defined using their disjuncts, if it is derived using ĄI. So we could wonder whether the meaning of a
disjunction in Milne’s system can be still defined by composition from that of its disjuncts. While it
is true that in order to gain compositionality a set of meaning-conferring rules should be sufficient to

119[Dummett, 1991], p. 257.
120See section 2.2.
121See definition 1.1.9 and discussion in section 1.1.2.
122Although standard antirealistic theories of meaning endorse general molecularism (1.1.5), proof-theoretic semantics

endorses special atomism regarding logical language (1.1.8).
123[Dummett, 1991], pp. 256-258; see also [Milne, 2002], pp. 522-.
124[Dummett, 1991], p. 258.
125See section 1.1.3.
126[Steinberger, 2011b], pp. 345-346. The point is made in connection with both Milne and Restall.
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introduce the respective connective in the principal position, nothing prevents us from assuming also
rules that introduce it in other positions.127 Doing so, we have to ways of deriving pA Ą Bq _ C by
I-rules: one that ends with an introduction of disjunction and one that ends with an introduction of
conditional. Compositionality is respected if there is harmony between these two ways of canonical
derivation.

So let us consider how Milne’s system deals with the usual requirements of proof-theoretic seman-
tics. First of all, since the meaning of both negation and conditional depends on that of disjunction
and apart from that all the other connectives have an atomistic meaning, we do not have any problem
of circular dependence of meaning. Let us now consider separability. Of course, since the meaning of
conditional depends explicitly on that of disjunction, this connective can be used also to derive purely
implicational results, like Peirce law. For this Milne proposes the following proof:128

rps1
_I p_ q

ĄI1
p_ pp Ą qq

rpp Ą qq Ą ps4 rp Ą qs2
ĄE p rps3

_E2,3 p
ĄI4

ppp Ą qq Ą pq Ą p

The availability of this derivation is not by accident, but we will not give a complete proof of separa-
bility, since this will be an obvious consequence of a stronger result that we will prove in section 3.3.
About harmony, the situation is similar: we can not expect to obtain harmony according to the
standard definition, since there is no reduction procedure for

Γ, rAs1

...
B _ C

ĄIMln 1
pA Ą Bq _ C

∆, rA Ą Bs2

...
D

Θ, rCs3

...
D

_E2,3
D

This is indeed the core of the objection raised by Steinberger against Milne’s proposal.129 Nonetheless,
as Milne himself pointed out, we should not expect this derivation to be reduced, since pA Ą Bq _ C
is not maximal in it.130 Indeed Ą is introduced in it but not used by the corresponding E-rule. What
we need to reduce is the occurrence of this formula in the following derivation: 131

rAs1

...
B _ C

ĄIMln 1
pA Ą Bq _ C

A rA Ą Bs2
ĄE

B
...
D

rCs3

...
D

_E2,3
D

And indeed this can be done, given

A
...

B _ C

rBs1

...
D

rCs2

...
D

_E1,2
D

In conclusion, the endorsement of Milne’s reform asks for a rethinking of the fundamental notions of
proof-theoretic semantics. We will investigate them in the following chapter (chapter 3), together with
other original changes. But, before doing that extensively, it is better to discuss some consequences
of our choice to interpret multiple conclusions as simple disjunctions. Indeed we could ask why we
should not follow the same path also for multiple assumptions and conjunctions. This will be the
topic of section 2.6. But before doing this, in the next section we will look at an alternative way of
developing a classical non-pure system.

127[Milne, 2002], p. 526.
128[Milne, 2002], p. 527.
129This worry is extensively exposed in [Steinberger, 2008], and re-marked in [Steinberger, 2011b], p. 345.
130[Milne, 2002], p. 527: “What we must not do is consider this [his I-rule for negation, but the same holds for his rule

for implication] a new, canonical, meaning-specifying rule for the introduction of disjunction as dominant operator”.
131[Milne, 2002], p. 518-519.
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2.5 Prawitz’s impure ecumenical system

Prawitz recently proposed another system for classical logic that rejects purity.132 There are two main
differences between Milne’s and Prawitz’s systems:

• In Milne’s formulation, classical and intuitionistic constants cannot coexist together, while
Prawitz proposes a restriction on the validity of classical logic that enables the coexistence
of both sets of constants;

• In Milne’s formulation, classical logic is an extension of intuitionistic logic since every intuition-
istic consequence is classically valid as well, while in Prawitz’s system the opposite holds, that
is the classical system is in some way a restriction of the intuitionistic one.133

Prawitz adopts a distinction between intuitionistic (Pip q) and classical predicates (Pcp q), and
distinguish between an intuitionistic and a classical version of disjunction, implication and existential
quantifier. His system is composed of Gentzen’s rules plus the following ones:

r Piptqs

...
K

PcI
Pcptq

Pcptq  Piptq
PcE

K

r A, Bs

...
K

_cI
A_c B

A_c B  A  B
_cE

K

rA, Bs

...
K

ĄcI
A Ąc B

A Ąc B A  B
ĄcE

K

r@x Apxqs

...
K

DcI
DcxApxq

DcxApxq @x Apxq
DcE

K

Using these rules, we can indeed define an ecumenical system in which classical and intuitionistic
consequences coexist. We just assume all Gentzen’s rules and these extra rules, and add a subscript
to distinguish between the classical and the intuitionistic version of _, Ą and D. So Gentzen’s rules for
^,  , K and @ are common to both the classical and the intuitionistic system, while Gentzen’s rules
for _, Ą and D define the meaning only of the intuitionistic variant of the corresponding connectives.
Prawitz does not specify this, but in some cases Gentzen’s rules cannot be derived for the classical
connectives (at least not in the complete ecumenical system), as we will see for Modus Ponens.

In this system, the intuitionistic theorems are provable if they are formulated using only the
intuitionistic vocabulary and the classical theorems are provable if they are formulated using only
the classical vocabulary.134 In this context, classical consequences are weaker than intuitionistic ones,
since they do not hold universally. Moreover, the meaning of classical constants is given by means of
the intuitionistic ones in Prawitz’s system, so the first system in some way depends on the second.

Prawitz stresses that we need to distinguish between the intuitionistic and the classical version
of these connectives because, even though the intuitionistic I-rules are always classically valid as
well, they sometimes cannot be regarded as meaning conferring.135 As an example, according to the
author, the standard rule of introduction for intuitionistic disjunction entails what is sometimes called
“property of disjunction”, that is that “A _ B may be rightly asserted only if it is possible to prove
either A or B”.136 Since this position is obviously at odds with the excluded middle, it follows that
this rule cannot be meaning conferring for classical disjunction.

It is not completely clear to me that this property of disjunction follows from the adoption of
standard _I. Indeed Milne’s classical system endorses it as meaning conferring but nonetheless does
not show this property. Maybe Prawitz is conjecturing that this property follows from _I together with
the fundamental assumption (assumption 1.2.1), or from_I together with some criterion stronger than
harmony.137 Nonetheless, this line of reasoning needs a clear reformulation of these extra principles
in the context of a non-pure system; a topic that deserves an entire investigation of its own and

132[Prawitz, 2015a].
133[Prawitz, 2015a], p. 28.
134[Prawitz, 2015a], p. 29.
135[Prawitz, 2015a], p. 27.
136[Prawitz, 2015a], p. 26.
137Maybe this could be true for _I together with the requirement of stability ([Dummett, 1991], chapter 13; [Stein-

berger, 2011a] for a good introduction). This criterion has recently received a lot of attention in the literature, and
even though Dummett’s original formulation is irreparably useless ([Dicher, 2016]), there have been good proposals for
an up to date reformulation: [Tranchini, 2016], [Jacinto and Read, 2017].
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that we cannot discuss here. For this reason, we will just consider harmony and the fundamental
assumption,138 and avoid discussing others extra criteria.

In general, both Prawitz and Milne ask for a change in I-rules in order to obtain a sound system for
classical logic, and they both argue that their systems are harmonious. We will consider thoroughly
Milne’s system, and we will take for granted that Prawitz’s one is harmonious.139 While Milne
modifies the rules for Ą and  in order to obtain classical logic, Prawitz modifies those for Ą and _,
and defines purely classical predicates (Pc). Prawitz argues that the connectives that he modifies in
order to obtain classical logic are different from the intuitionistic ones, while Milne does not take a
position about this issue. Prawitz’s reason for asserting their difference is that these connectives are
severed in his mixed (classical and intuitionistic) system. We will discuss the issue of the identity of
logical connectives in chapter 4, and we will compare these two approaches to the problem.

Of course, the dependence of meaning is different in Prawitz’s system and in Milne’s system. Ac-
cording to Milne, both conditional and negation depend on disjunction in the classical system, while
according to Prawitz, classical predicate, classical disjunction, classical conditional and classical exis-
tential all depend on negation, classical existential quantifier depends on universal quantifier and every
classical predicate depends on its intuitionistic counterpart. Both systems exhibit weak separability,
so they both are good candidates for our project.140 As an example, let us consider the following
proof of Peirce’s law:

rpA Ąc Bq Ąc As
2

rAs1 r As2
 E

K
Efq

B
¸1

A Ąc B r As2
ĄcE

K
ĄcI2

ppA Ąc Bq Ąc Aq Ąc A

Where the inference ¸ has the same shape of ĄiI and is derivable for Ąc in the following way:

rAs1

...
B r Bs1

 E
K

ĄcI1
A Ąc B

It uses rules for Ąc,  and K, and this is completely fine, since the meaning of Ąc is defined using  
and this is defined using K.

Interestingly enough, the previous derivation of ¸ holds even if some elements of the intuitionistic
vocabulary occur in A or B. That is ĄiI is always derivable for Ąc. If it were possible to derive ĄiE
as well, that is Modus Ponens, we would have a problem. Indeed it would become possible to derive
A Ąi B from A Ąc B:

A Ąc B rAs1
Derived MP

B
ĄiI

A Ąi B

Of course we do not want this, since $   A Ąc A but &   A Ąi A. What we want is the
derivability of Modus Ponens for Ąc when both premisses and conclusion are composed using only
the classical vocabulary.141 Luckily, an even stronger result holds:

A Ąc B A rBs1
ĄcE

K
 I1

  B
DNE

B
138In chapter 3.
139A complete proof of normalization (missing in [Prawitz, 2015a]) can be found in [Pereira and Rodriguez, 2017].
140Nonetheless, in the next section we will adapt these restrictions for the acceptability of the systems to a new single-

antecedent framework. We will develop these restrictions in chapter 3 for a system based on Milne’s one. Arguably, the
same process could be accomplished for Prawitz’s system too.
141Indeed, since the canonical bases to derive A Ąc B are weaker than those to derive A Ąi B, it is understandable

that they do not justify Modus Ponens, but only the weaker rule:
A Ąc B A

  B
. See [Pereira and Rodriguez,

2017], p. 1157.
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Here, DNE is derivable if B is a classical constant or its main operator is classical.142 As a consequence,
in this case Modus Ponens holds too.

So classical and intuitionistic conditionals are severed, but the fact that Modus Ponens holds in
general only for the intuitionistic conditional is at least strange. The discussions between classical
and intuitionistic logicians rarely regard Modus Ponens. Moreover, this means that entailment in
Prawitz’s system is intuitionistic, and become classical only in a restricted subsystem.143 At first
glance, this seems to suggest that in this system only the intuitionistic one is a real logic, while the
classical fragment does not really speak of entailment.

Let us now consider how Prawitz’s system deals with negation. We could wonder whether it
is possible to sever classical and intuitionistic negations as we did with classical and intuitionistic
conditionals. In Prawitz’s system they coincide because it is provable pA Ąc Kq ĂĄi pA Ąi Kq ĂĄi

 A, and deduction theorem holds for intuitionistic conditional. So, even though Ąi and Ąc are
different, if there is a classical derivation of K then there is an intuitionistic derivation too. Since
this situation is sanctioned by Glivenko’s theorem, at least for the propositional fragment there seems
to be no way out: classical and intuitionistic negations cannot be distinguished.144 This situation is
strange as well since there seem to be disagreements between the classical and the intuitionistic usage
of negation. As an example, double negation elimination holds only classically. This difference of
behaviour cannot be explained plainly by reference to two different connectives, and this is unpleasant
for this kind of ecumenical system.

2.6 Reasons for single-assumption

Taking for granted that multiple conclusions are just disjunctions in disguise, it is hard to resist
the temptation of concluding the same about multiple assumptions and conjunctions. Indeed already
Dummett deals with this issue and feels an obligation to find a reason why this should not be the case.
As we already stressed, according to him, “asserting A and asserting B is tantamount to asserting
x A and B y”.145 Dummett suggests that, for this reason, we can grasp the meaning of multiple
assumptions without using that of conjunction.

Dummett’s idea is essentially that multiple assertion, that is asserting multiple sentences, is un-
derstood as conjunctive in nature so, since conjunctive multiple assertion is what we need in order to
have multiple assumptions, multiple assertion is enough to define the meaning of multiple assumption.
Of course, the next step is the introduction of conjunction using multiple assumptions, that gives no
problem at all.

While Dummett’s argument is very precise and innovative, I think that it rests on a misconception
about multiple assertions. Arguably the conjunctive reading of multiple assertions is so common to
be seen as automatic, or natural, but there are no reasons to believe that this is the case. We are just
repeating the same mistake, doing here what we did with multiple-conclusion logic: assuming for the
comma the properties we want to prove for conjunction. We already exposed in paragraph 2.4.2 the
naturalistic reasons why conjunctive reading is preferred to disjunctive one, and I believe that they
are enough to explain why accidentally multiple assertions are usually read conjunctively. That is
there are no bases to claim that conjunctive multiple assertions are graspable naturally, without any
notion of conjunction.

Steinberger proposes an interesting interpretation of this argument.146 While if you assert A and
you assert B, you speaks truly if and only if the sentence x A and B y is true, if you assert A or you
assert B, you can not be sure of speaking truly only because the sentence x A or B y is true. Indeed
if you assert that aardvarks are indigenous of South America, then you are asserting that aardvarks
are indigenous of South America or you are asserting that they are nocturnal. Nonetheless (since
aardvarks are not indigenous of South America) you are not speaking truly, although it is true that
aardvarks are indigenous of South America or nocturnal (since they are nocturnal). So there is a
mismatch between the assertion of a disjunction and a disjunction of assertions that is not present
between the assertion of a conjunction and a conjunction of assertions.

Even though this observation is very interesting and could be useful to integrate our naturalistic
explanation of why the conjunctive reading of multiple assertions is more easily graspable, I do not
see its relevance to the discussion at issue. Indeed we are not discussing the eventuality of identifying
a multiple conclusion with a disjunction of assertions (or better alternative assertions), we are just

142[Pimentel et al., 2019a], sec. 3.1, Def. 5.
143In general Γ $ C iff $ Γ Ąi C, while only for a subset of sentences Γ $ C iff $ Γ Ąc C: [Pimentel et al., 2019a],

pp. 10,13.
144[Pimentel et al., 2019b].
145[Dummett, 1991], p. 187.
146[Steinberger, 2011b], p. 248.
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questioning the conjunctive reading of multiple assertions. Given the conjunctive reading of multiple
assertions we have A,B “ A^B, while given the disjunctive reading we have A,B “ A_B; none of
these interpretations entails A “ A_B and B “ A_B, that is what we need to have the equivalence
between assertion of a disjunction and alternative assertion. So alternative assertions are not part of
the picture, and rejecting their identification with the assertion of disjunctions does not justify the
conjunctive reading of multiple assertions.

Moreover, let us consider again the starting point of this argument. Suppose that someone asserts
A and asserts B. Are we sure that these assertions are true if and only if x A and B y is true,
according to our standard linguistic practice? It seems to depend a lot on the context. First of all,
it depends on when these statements are asserted. Conjunctive reading is plausible (almost certain)
only if the two sentences are asserted together one shortly after the other, and especially if there are
no other utterances of words between these two. Otherwise, this reading is blatantly unjustified. So,
it seems to me that conjunctive reading of multiple assertions is only accepted as a contraction of
conjunctions, and if this is the case, there are no reasons to believe in their logical priority with respect
to conjunctions tout court.

I think that this argument is far from being the real reason why the unmasking of multiple as-
sumptions is so rare in proof-theoretic semantics. The real reason is a worry explicitly expressed by
Steinberger himself. He fears that147

“The result [of this unmasking] would be not so much a disproof of inferentialism as a
wholesale disqualification of any proof system with multiple premises (and so, in practice,
any proof system whatsoever) from playing the role of a proof-theoretic framework.”

I believe that this conclusion is far from been necessary. Indeed we will see in the next chapter
how it is possible to reconstruct the usual proof systems in a framework that allows neither multiple
assumptions (Single Assumption), nor multiple conclusions (Single Conclusion). The kind of liberal-
izations that we will need are not stronger in essence than the ones proposed by Milne, we will just
need a more extensive application of his ideas. We will discuss also the possibility of accommodating
harmony and the other criteria of proof-theoretic acceptability.148

The only further modification that we need to impose is the substitution of Dummett’s complexity
condition with our non-circularity condition (definition 1.1.9), that we already discussed extensively.
As an example, we can not impose any restriction on the complexity of C in the following rule, that
is needed in order to deal with conjunction in SASC-systems:149

C

rCs

...
A

rCs

...
B

^I
A^B

147[Steinberger, 2011b], p. 347.
148Someone could be worried about the famous lottery paradox according to which, while it is rational for each single

lottery ticket to believe that it is not winning, it is absurd to believe that all of them are loosing. In particular, it could
seem rational to believe the sentence “the ticket number n is loosing” for every number, but it is surely absurd to believe
in the conjunction of all these statements, since at least one of them must be winning. In some way, an argument of
this kind goes in the uncharted direction of rejecting the conjunctive reading of assertions in a radical way. Nonetheless
I believe that the problem here raises with considering all the sentences together, regardless of their being connected
by a conjunction or not. That is, the endorsement of the complete list of sentences “the ticket number n is loosing” is
as absurd as the endorsement of their conjunction, according to the conjunctive reading, so this is not a reason to be
sceptical about their identification.
149This rule has been already proposed by Milne in his [Milne, 1994] (p. 78), although for completely different reasons.
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Chapter 3

Harmony and Validity for SASC
systems

In this chapter, we introduce a strongly separable very weak system for a sublogic of intuitionistic logic.
Since this system suits both the restrictions for intuitionistic logic, and those for dual-intuitionistic
logic, I label it ‘JDJ’. Later on, we start weakening the requirement of separability. We obtain in
this way a system for both intuitionistic (J) and classical (K) logic. While the main purpose of this
chapter is to deal with natural deduction systems, we will develop sequent calculus systems as well.
These systems will be used in order to prove results about the natural deduction formulations. A
summary of the systems developed can be found in appendix A, while here we will report only the
natural deduction versions. Harmony, separability, and validity of these systems is discussed, while
the formal results are demanded to the appendix B.

3.1 Single-assumption and single-conclusion strong-separable
system

The first system is the one in table 3.1. The usage of lists, multisets or sets is irrelevant in this case,
since we will have only one formula (at most) in the antecedent and in the succedent. Nonetheless, in
order to have a SASC-system, the discharge of the assumptions can not be optional. Indeed, without
this obligation we could obtain multiple assumptions in this way.

A_B
A

_I
A_B

B
_I

A_B
_E

A_B

Observation 3.1.1. Every valid derivation in SASCNJDJ have at most one open assumption and
precisely one conclusion.

Proof. We can show that in every derivation there is at most one open assumption by induction on the
length of the derivation. The base is obvious and the only interesting cases are those which compose
more than one sub-derivation.

3.1.1 Equivalence between SASCLJDJ and SASCNJDJ

Theorem 3.1.1 (Equivalence between SASCLJDJ and SASCNJDJ). 1. (a) If $SASCLJDJ Añ
B, then:

• Or A $SASCNJDJ B;

• Or $SASCLJDJñ B and $SASCNJDJ B.

(b) If $SASCLJDJ Añ, then A $SASCNJDJK.

2. (a) If A $SASCNJDJ B, then $SASCLJDJ Añ B.

3.1.2 Properties of JDJ systems

Theorem 3.1.2 (Cut elimination for SASCLJDJ). If $SASCLJDJ A ñ B, then we can prove it
without using the Cut rule. Also, there is a procedure that changes a valid derivation of a sequent, in
a Cut-free derivation of the same result.
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C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

A_B

rAs

...
C

rBs

...
C

_E
C

A
_I

A_B

B
_I

A_B

rAs

...
B

ĄI
A Ą B

A Ą B

H

...
A

rBs

...
C

ĄE
C

rAs

...
K

 I
 A

K
Efq

C
 A

H

...
A

 E
K

Table 3.1: SASCNJDJ

Proof. Proof is in B.2.1.

Theorem 3.1.3 (Admissibility of Contraction for SASCLJDJ). 1. If $SASCLJDJ A ^ A ñ B,
then $SASCLJDJ Añ B;

2. If $SASCLJDJ Añ B _B, then $SASCLJDJ Añ B.
The admissibility of Contraction does not affect the elimination of Cut.

Proof. We can derive the contraction rules in the following way, using Cut:

A^A ñ B
Cont

A ñ B
as

A ñ A A ñ A
ñ ^

A ñ A^A A^A ñ B
Cut

A ñ B

A ñ B _B
Cont

A ñ B
as A ñ B _B

B ñ B B ñ B
_ ñ

B _B ñ B
Cut

A ñ B
Contraction is not assumed as a primitive rule in SASCLJDJ, and so it is not used in the proof of

Cut elimination. The adoption of this rule is just an abbreviation, so Cut elimination remains valid.
From Cut elimination and definability of Contraction using Cut, we have Contraction elimination.1

Definition 3.1.1 (Maximal sequence (SASCNJDJ)). Given a derivation D in SASCNJDJ, a
maximal sequence in it is a list of formulae C1, ¨ ¨ ¨ , Cn such that:

• C1 is the conclusion of an I-rule.

• Ci “ Ci`1, for every i ă n

• Ci for 1 ď i ă n is the premise of an inference used in D, the conclusion of which is the next
element on the list Ci`1;

• The last element of the list Cn is the major premise of an E-rule.

A maximal sequence composed by just a formula is called ‘maximal formula’.

Definition 3.1.2 (Normal derivation (SASCNJDJ)). A derivation of B from A in SASCNJDJ is
normal if there are no maximal sequences in it.

Theorem 3.1.4 (Normalization for SASCNJDJ). If A $SASCNJDJ B, then:

1This phenomenon is not common at all in sequent calculus, since in almost every sequent calculus the admissibility
of Cut is proved using Contraction.
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• Or there is a normal derivation of B from A;

• Or there is a normal closed proof of B.

Proof. Proof is in B.2.1

Theorem 3.1.5 (Strong separability for SASCLJDJ). If $SASCLJDJM A ñ B, then there is a
derivation of A ñ B in which only the rules and formulae for the constants that occur in the end-
sequent are used. If $SASCLJDJ Añ B, then there is a derivation of Añ B in which only the rules
and formulae for the constants that occur in the end-sequent are used, apart from K that can be used
if it or  occurs in the end-sequent.

Proof. Let us consider the Cut-free derivation of Añ B that exists according to theorem 3.1.2. With-
out Cut, we can not erase any logical constant introduced in the derivation by any rule (operational
or structural, is irrelevant). The only exception is ñ K that erase K from the succedent, we will
consider this case later. If a rule is necessary to prove a consequence, it has to be used also in the
Cut-free derivation, and so the constant it introduce has to be found also in the antecedent or in the
conclusion of the sequent.

Let us now consider the seemingly problematic case of K. Technically speaking, strong separability
holds only for the K-free fragment of SASCLJDJ, but we will see that this is unproblematic, since K
occurs in the I-rule for  . To save weak separability, we have to prove that if K occurs in a Cut-free
derivation for A ñ B, then it or  occur in A or B. If K occurs in the derivation, it has to be
introduced by Axiom or by Weakening.

• In the first case, it occurs both on the left and on the right, and only the occurrence on the right
is erased. To erase the one on the left, we should move it on the right without using it to form
a more complex formula (complexity ineliminable in a Cut-free derivation, once introduced).
But the only rules which move formulae on the right are ñ  and ñĄ, which violate the
requirement. So we will find K in the end-sequent.

• In the second case we need a void succedent, and the only way to obtain it is by ñ  or by
ñ K. If we have obtained it by ñ  we have the conclusion, otherwise we go on and ask how
this new K is introduced in the derivation. We can not always answer taking this path, since in
this way we would obtain an infinite descending chain in the derivation (that obviously has to
be finite). So K or  is in the end-sequent.

So we can conclude that the K-free calculus is strongly separable, and the complete calculus is weakly
separable, since K occurs only if it or  occurs in the end-sequent.

Theorem 3.1.6 (Strong separability for SASCNJDJ). If A $SASCNJDJM,  B, then there is a
derivation of B from A in which only the rules and formulae for the constants that occur in those
formulae are used. If A $SASCNJDJ B, then there is a derivation of B from A in which only the rules
and formulae for the constants that occur in those formulae are used, apart from K that can be used
if it or  occurs in A or B.

Proof. From the previous theorem, we have a Cut-free derivation of A ñ B in SASCLJDJ. By
taking this SASCLJDJ-derivation and applying the translation seen in proof B.1.1 we obtain a
SASCNJDJ-derivation of B from A in which Ab B is assumed iff it is the principal formula in an
application of Axiom, bI is applied iff ñ b is applied, bE is applied iff b ñ is applied and Efq is
applied iff ñWeak is applied. From this, we obtain weak separability for SASCNJDJ since in order
to have the occurrence of a rule or a formula in the SASCNJDJ-derivation we should have it also
in the corresponding SASCLJDJ-derivation. The only delicate case is with absurdity and negation,
since ñWeak and void succedent translate in applications of Efq and usage of K.

We have already shown that in order to use ñ Weak we need a void succedent, and to obtain it
we have to use ñ K or  ñ, and in those cases K or  occur in the end-sequent. In other words,
we already connected void succedent to absurdity. So if K occurs in the SASCNJDJ-derivation
obtained from translation, it does not violate separability, and the same holds for applications of Efq.
In conclusion, weak separability holds also for SASCNJDJ.

The only consequence of the translation of Weakening with Efq is that we can state strong sep-
arability only for the K-free and  -free fragment of SASCNJDJ (and not in the K-free fragment),
because Weakening is enough to give us Efq in the translation. For example the strongly separable
SASCLJDJ-derivation:
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C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

pA_Bqt^Du

rAt^Dus

...
C

rBt^Dus

...
C

_E
C

A
_I

A_B

B
_I

A_B

tCu

rAt^Cus

...
B

ĄI
A Ą B

A Ą Bt^pD ^ Equ

rtEus

...
A

rBt^Dus

...
C

ĄE
C

tCu

rAt^Cus

...
K

 I
 A

K
Efq

C
 At^Cu

rt Cus

...
A

 E
K

Table 3.2: SASCNJ

A ñ A
ñĄ

ñ A Ą A
 ñ

 pA Ą Aq ñ
ñWeak

 pA Ą Aq ñ C

Is translated using Efq :

 pA Ą Aq

rAs1
ĄI1

A Ą A
 E

K
Efq

C

In conclusion, let us note that strong separability could not be established for SASCNJDJ without
Efq, so for minimal SASCNJDJ. Indeed, even though Efq could not be used in this system, the usage
of K could still be needed in a derivation regarding  . Of course, the recourse to K is still justified,
since it occurs in  I in minimal SASCNJDJ too, and the only result we achieve by using a minimal
negation is to keep undefined the meaning of K.

The proof of normalization can be used to obtain the validity of every derivation of SASCJDJ,
defined as in standard proof-theoretic semantics. We will see that this result is not so obvious for the
more powerful systems that we develop in the following sections.

3.2 Intuitionistic logic

The SASC-system for intuitionistic logic is resented in table 3.2. Its distinctive character is that
it allows the elimination of connectives that occur in a subordinate position with respect to the
conjunction.

As for Milne’s system, ‘tAu’ means that in the rule this formula is not necessary.2 For example
ĄI can be used to transform a derivation of B from A in a closed proof of A Ą B, or to transform a
derivation of B from A^ C in a derivation of A Ą B from C.3

This notation has the same meaning in the sequent calculus system as well.4 That is, ñĄ can be

2See paragraph 2.4.2.
3Technically speaking we could avoid the use of brackets, assuming two rules for each formula tAu: one with it and

one without.
4The sequent calculus systems are developed in appendix A.
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used to derive ñ A Ą B from A ñ B, or C ñ A Ą B from A ^ C ñ B. This would be impossible
with ‘^C’ in ñĄ without brackets. Obviously also the formulae in the context are not needed but,
in this case, we omit the curly brackets.

About sequent calculus, some observations are needed for the transition from a multiple-antecedent
framework to our single-antecedent one. If we formulate LJ using sets or multisets we can omit
Permutation from the rules. An effect of this choice is that formulae in the antecedent become all ‘at
the same level’, and we can apply the rules to every selection of them. For example, in the rule ñĄ
we can have several formulae in the antecedent, and they are all ‘at the same level’ if we use sets or
multisets of formulae in the definition of sequents, so that we can apply the rule to any one of these.
In this case, for example, all the following applications of the rule are correct:

A,B,C ñ E
ñĄ

B,C ñ A Ą E

A,B,C ñ E
ñĄ

A,C ñ B Ą E

A,B,C ñ E
ñĄ

A,B ñ C Ą E

Of course, it is not possible to behave in the same way in a single formula sequent calculus like
SASCLJ, since conjunction is a binary connective, and an expression likeA^B^C is not grammatical.
In this case, we have that in:

A^ pB ^ Cq ñ E
ñĄ?

B ^ C ñ A Ą E

A^ pB ^ Cq ñ E
ñĄ?

A^ C ñ B Ą E

A^ pB ^ Cq ñ E
ñĄ?

A^B ñ C Ą E

B ^ pA^ Cq ñ E
ñĄ?

B ^ C ñ A Ą E

B ^ pA^ Cq ñ E
ñĄ?

A^ C ñ B Ą E

B ^ pA^ Cq ñ E
ñĄ?

A^B ñ C Ą E

C ^ pA^Bq ñ E
ñĄ?

B ^ C ñ A Ą E

C ^ pA^Bq ñ E
ñĄ?

A^ C ñ B Ą E

C ^ pA^Bq ñ E
ñĄ?

A^B ñ C Ą E

Only the first application of the first raw, the second application of the second raw and the third of
the third are correct.

In the same way, if we use sets to construct antecedents and succedents of sequents, we can remove
Contraction from the rules of LJ. In this way we can accept inferences like:

Γ, A Ą B ñ A B,∆ ñ C
Ąñ

Γ,∆, A Ą B ñ C

Nonetheless, it is obvious that the corresponding inference in SASCLJ is not correct:

D ^ pA Ą Bq ñ A B ^ E ñ C
Ąñ

pD ^ Eq ^ pA Ą Bq ñ C

Since the conclusion should be pA Ą Bq ^ pE ^ pD ^ pA Ą Bqqq ñ C.
Of course, even though these are not correct single steps of inference, they can be derived using

Associativity, Commutativity, and Idempotence of conjunction in SASCLJ, together with the rule
of SASCLJ corresponding to that of LJ. Nonetheless, since we use the multiple-assumption sequent
calculus LJ just as an instrument to study our single-assumption systems, we prefer to use lists of
formulae. In this way, Permutation and Contraction correspond to Commutativity and Idempotence
of conjunction, and the proof of equivalence between SASCLJ and LJ become easier and more infor-
mative. We will know that when LJ uses Permutation we have to use Commutativity of conjunction
and when LJ uses Contraction we have to use Idempotence of conjunction.

While this solution solves much of our problems, the correspondence is not perfect, since Per-
mutation can be applied without consideration for associativity. Indeed the following application of
Permutation is correct:

A,B,C ñ E
Per ñ

B,A,C ñ E
ñĄ

A,C ñ B Ą E

While the corresponding derivation in SASCLJ can not relate just to Commutativity:5

A^ pB ^ Cq ñ E
Comñ

pB ^ Cq ^A ñ E
Asñ

B ^ pC ^Aq ñ E
ñĄ

C ^A ñ B Ą E
Comñ

A^ C ñ B Ą E
5It is the first derivation in the second raw of the previous table.
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Indeed it is obvious that also Associativity of conjunction is needed, since Commutativity just
allows us to derive A ^ pC ^ Bq ñ E or pB ^ Cq ^ A ñ E or pC ^ Bq ^ A ñ E from the given
premise. The same problem can be seen also in other examples regarding permutation. This problem
can not be solved since it refers to a radical difference between comma and conjunction. We can render
explicit the need for Permutation in LJ, as we did, by using lists of formulae. In the same way, we
render explicit the need for Contraction in LJ.6 Nonetheless, there is no possibility for associativity
of conjunction to be made explicit in LJ, since antecedent formulae are all at the same level. This
will influence the conclusion we can obtain from the translation between our system and LJ.

Definition 3.2.1 (Division of lists). Given a list of formulae Γ, the pair p∆,Θq is a division of it iff
∆ Y Θ “ Γ, ∆ X Θ “ H and @xP∆yPΘpx ă yq. Where ă is the relation of ordering of the list. We
write p∆,ΘqΓ if p∆,Θq is a division of Γ.

Definition 3.2.2 (Conjunction of antecedent). Given a list of formulae Γ, Γ^ is the class of all the
possible associations of conjunctions of all the formulae γ P Γ. Formally, Γ^ “ tpxq ^ pyq | x P
∆^ & y P Θ^ & p∆,ΘqΓu, if Γ has more than one element. Γ^ “ Γ, otherwise. $ Γ^ ñ C and
Γ^ $ C are used as abbreviations for $ tAu ñ tCu and tAu $ tCu for every A P Γ^. In brief, the
result has to be provable for every element of Γ^, regardless of the position of parenthesis.

As an example, let us consider Γ “ tA,B,C,Du. It has three divisions, with several divisions
themselves:

1. ∆1 “ tA,B,Cu and Θ1 “ tDu, where ∆1 has two divisions:

• Λ1 “ tA,Bu and Ξ1 “ tCu;

• Λ2 “ tAu and Ξ2 “ tB,Cu.

and Θ1 only the obvious one;

2. ∆2 “ tA,Bu and Θ2 “ tC,Du, where both sets have only one obvious division;

3. ∆3 “ tAu and Θ3 “ tB,C,Du, where ∆3 has only one obvious division, while Θ3 has two
divisions:

• Υ1 “ tB,Cu and Ω1 “ tDu;

• Υ2 “ tBu and Ω2 “ tC,Du.

Let us start from the first division of Γ. We have that Λ^1 “ tA ^ Bu, Ξ^1 “ tCu, Λ^2 “ tAu
and Ξ^2 “ tB ^ Cu. So ∆^1 “ tpxq ^ pyq | x P Λ^1 & y P Ξ^1 or x P Λ^2 & y P Ξ^2 u “
tpA^Bq ^ C,A^ pB ^ Cqu, while obviously Θ^1 “ tDu

The second division is easier. ∆^2 “ tA^Bu and Θ^2 “ tC ^Du.
The third division is similar to the first. We have that Υ^1 “ tB ^Cu, Ω^1 “ tDu, Υ^2 “ tBu and

Ω^2 “ tC ^ Du. So ∆^3 “ tAu and Θ^3 “ tpxq ^ pyq | x P Υ^1 & y P Ω^1 or x P Υ^2 & y P
Ω^2 u “ tpB ^ Cq ^D,B ^ pC ^Dqu.

In conclusion: Γ^ “ tpxq ^ pyq | x P ∆^1 & y P Θ^1 or x P ∆^2 & y P Θ^2 or x P
∆^3 & y P Θ^3 u “ tppA ^ Bq ^ Cq ^ D, pA ^ pB ^ Cqq ^ D, pA ^ Bq ^ pC ^ Dq, A ^ ppB ^ Cq ^
Dq, A^ pB ^ pC ^Dqqu.

Definition 3.2.3. Given a formula C, C˝ is defined as the result of the uniform substitution of
 pE Ą Eq for K in C. Given a set of formulae Γ, Γ˝ is the set of all γ˝ for γ P Γ.

Theorem 3.2.1 (Equivalence between LJ and SASCLJ). Sequent calculi LJ and SASCLJ are
equivalent to each other, that is:

1. If $LJ Γ ñ C, then $SASCLJ Γ^ ñ C;

2. If $SASCLJ D ñ C, then $LJ D
˝ ñ C˝.

Proof. The proof is in B.1.2.

Theorem 3.2.2 (Equivalence between SASCLJ and SASCNJ). The sequent calculus SASCLJ
and the natural deduction system SASCNJ are equivalent to each other, that is:

1. (a) if $SASCLJ Añ B, then:

6In this case multisets would be enough.
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• Or A $SASCNJ B;

• Or $SASCLJñ B and $SASCNJ B.

(b) If $SASCLJ Añ, then A $SASCNJK.

2. (a) If A $SASCNJ B then $SASCLJ Añ B.

Proof. The proof is in B.1.2.

Theorem 3.2.2 in combination with theorem 3.2.1 shows that SASCNJ is adequate for intuition-
istic logic.

3.2.1 Separability

To prove weak separability of this system, we use the principle:

Observation 3.2.1. If a1, . . ., am are all and only the logical constants used in b1I, . . ., bnI, then
all valid derivations of consequences regarding only b1, . . ., bn must be provable using only b1, . . .,
bn, a1, . . ., am (so just by using ai-formulae, ai-rules, bi-formulae and bi-rules).

This observation specifies what we have to prove in order to obtain separability. The desiderata is
that there is no dependence of the meaning of one connective from the meaning of another one if this
does not occur in the I-rule of the first. This is just a more practical reformulation of the analyticity
of logic.

By looking at the I-rules of SASCNJ we obtain the following clauses:

1. To prove a consequence in which only ^ occurs, we need to use only ^-rules and ^-formulae;

2. To prove a consequence in which only _ occurs, we need to use only _-rules and _-formulae;

3. To prove a consequence in which only ^ and _ occur, we need to use only _-rules, ^-rules,
_-formulae and ^-formulae;

4. To prove a consequence in which only Ą occurs, we need to use only Ą-rules, ^-rules, Ą-formulae
and ^-formulae (the same holds for consequences in which only Ą and ^ occur);

5. To prove a consequence in which only Ą and _ (and ^) occur, we need to use only Ą-rules,
^-rules, _-rules, Ą-formulae, ^-formulae and _-formulae;

6. To prove a consequence in which only  occurs, we need to use only  -rules, ^-rules, Efq,
 -formulae, ^-formulae and K (the same holds for consequences in which only  and ^ occur);

7. To prove a consequence in which only  and _ (and ^) occur, we need to use only  -rules,
^-rules, _-rules, Efq,  -formulae, ^-formulae, _-formulae and K;

8. To prove a consequence in which only  and Ą (and ^) occur, we do not need to use rules of
formulae for _;

9. Of course if the consequence regards the full language, we can fully use it in the derivation.

We should have also some clauses regarding the occurrence of K in assumption and conclusion, but
we will deal with it in the next section.

Disjunction and conjunction

Let us start from clause 1.

Conjunction is independent To show this, let us prove that SASCNJ conservatively extends
SASCNJ^. The result will be that the meaning of conjunction is independent of that of the other
connectives.7

Theorem 3.2.3 (SASCNJ conservatively extends SASCNJ^). If A $SASCNJ B and the only
connective that occurs in tAu Y tBu is ^, then A $SASCNJ^ B.

7Let us keep in mind that, since we use separability to define independence of meaning, this relation is not symmet-
rical.
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Proof. We prove that SASCNJ^ can prove all the consequences of NJ^. NJ is strongly separable,
that is ^ rules are sufficient to prove all the NJ-consequences regarding only ^, so by this result we
obtain that ^ rules of SASCNJ are sufficient to prove all the SASCNJ-consequences regarding only
^.

Let us assume that d is a proof of Γ $NJ B. We define the proof d˚ of Γ^ $SASCNJ B by
induction on the length of d. The base is obvious, so let us see the steps:

^I:

∆
...d1

A

Θ
...d2

B
^I

A^B

ù

∆^ ^Θ^

r∆^ ^Θ^s1
^E

∆^

...d˚1
A

r∆^ ^Θ^s2
^E

Θ^

...d˚2
B

^I1,2
A^B

In this way we obtain ∆^ ^ Θ^ $SASCNJ A ^ B. To have p∆ Y Θq^ $SASCNJ A ^ B in its
full generality, we have to apply associativity of conjunction to the major premise of ^I. This is
not a problem, since we have already seen that it can be derived using only ^-rules.

^E:

∆
...d

A^B
^E

A

ù

∆^

...d˚

A^B rAs1
^E1

A

So, in order to prove the purely conjunctive consequences of NJ we have to use only ^-rules of
SASCNJ. If A $SASCNJ B, then A $NJ B by theorems 3.2.1, 3.2.2 and equivalence between LJ
and NJ in [Gentzen, 1969b].8 By strong separability, there is a derivation of A $NJ B in which only
^-rules are applied, and by this translation there is such a derivation also in SASCNJ.9

We consider the ^-fragment as the fragment in which the other logical constants are removed from
the vocabulary and their rules are removed from the proof systems. So also the separability restriction
on formula occurrence holds.

Disjunction is independent (also from conjunction) The rules for ^ are pure both in SASC-
NJDJ and in SASCNJ, while those for _ are pure only in the first system. The fact that ^ occurs
in the elimination but not in the introduction rule for _ can be confusing; is conjunction necessary to
define the meaning of disjunction? I do not think so, indeed _I defines the meaning of disjunction,
and it is pure. We can make rigorous this intuition by proving that all the valid consequences in
SASCNJ in which only _ occurs are already provable in SASCNJDJ, and so can be proved using
only pure rules for _ (clause 2 ).

Theorem 3.2.4 (SASCNJ conservatively extends SASCNJDJ_). If A $SASCNJ B and the only
connective that occurs in tAu Y tBu is _, then A $SASCNJDJ B.

Proof. If A $SASCNJ B and _ is the only connective in A and B, then we know by theorems 3.2.2
and 3.2.1 that $LJ Añ B.10 By the equivalence between LJ and NJ established in [Gentzen, 1969b],
we obtain A $NJ B. Now, since this system is strongly separable, A $NJ B can be proved using only
_-rules and _-formulae. Since these rules are the same as those of SASCNJDJ, and it is impossible
to obtain multiple assumptions just using them, the derivation of NJ works also for SASCNJDJ. So
we have that the _-fragment of SASCNJDJ (that is equivalent to that of SASCNJ) proves every
purely disjunctive consequence of SASCNJ.

So the conjunction in _E is needed only to prove consequences in which _ do occurs alongside
with ^, like distribution of conjunction over disjunction:

pB _ Cq ^A

rA^Bs1
_I

pA^Bq _ pA^ Cq

rA^ Cs1
_I

pA^Bq _ pA^ Cq
_E1

pA^Bq _ pA^ Cq
8Since K does not occur neither in A nor in B, the conversion indicated by ˝ is not used.
9Of course we could obtain the same result using LJ instead of NJ.

10Since K does not occur neither in A nor in B, the conversion indicated by ˝ is not used.
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Disjunction and conjunction does not depend on other connectives Let us conclude the
section on conjunction and disjunction by proving clause 3.

Theorem 3.2.5 (SASCNJ conservatively extends SASCNJ^_). If A $SASCNJ B and the only
connectives that occur in tAu Y tBu are ^ and _, then A $SASCNJ^_ B.

Proof. If A $SASCNJ B and the only connectives that occur in tAu Y tBu are ^ and _, then we
know by theorems 3.2.2 and 3.2.1 that $LJ A ñ B.11 Let us consider a Cut-free derivation of
Añ B in LJ in which only ^ and _-formulae occur.12 The translation used in proof B.1.2 gives us a
SASCLJ-derivation in which only the rules used by LJ are applied, apart from those obtained by the
translation of Cont ñ, Weak ñ, Perm ñ and by occurrences of As ñ. Those extra rules request
also the application of Cut. Nonetheless, it can be seen that the translation used in proof B.1.2 to
obtain a SASCNJ-derivation from a SASCLJ-derivation allow us to translate all those extra rules
by using only ^-rules. Also, it can be easily seen that only atomic, ^ and _-formulae occur in the
obtained derivation. So separability holds for the derivation that we obtain at the end of this process.

But how is it possible that the meanings of ^ and _ are the same in SASCNJDJ and SASCNJ,
if the two logics disagree on some derivations like distribution? The answer is that, even though
the connectives have the same meanings, _E of SASCNJDJ does not allow to completely use the
meaning given to this connective by _I. In some way, it is too weak for the respective I-rule and, in
order to solve this problem, we have to introduce ^. This answer could seem a little ad hoc, but we
will see that also another criterion for deciding of the acceptability of E-rules – existence of normal
derivation – save SASCNJ extension of _E.

Conjunction and Implication

We will prove clause 4 in two steps.

Implication depends on conjunction Since ^ occurs in ĄI, the meaning of intuitionistic implica-
tion depends on the meaning of conjunction. To show this, it is enough to find a purely implicational
consequence that can not be derived without using conjunction.13 A good example is transitivity. Let
us use the abbreviations: φ “def ppB Ą Cq^pA Ą Bqq^A and ψ “def pB Ą Cq Ą pA^Bq_pA^Cq.

rφs5

rφs2
^E

pB Ą Cq ^ pA Ą Bq
^E

B Ą C

rφs2

rφs1
^E

pB Ą Cq ^ pA Ą Bq
^E

A Ą B

rφs1
^E

A
^I1

pA^Bq ^A
^I2

ppA^Bq ^Aq
^I2

ψ

...

rA Ą Bs7
rpB Ą Cq ^ pA Ą Bqs6

...
ψ

rpA Ą Bq ^As4 rAs3 rBs3
ĄE3

B rCs4
ĄE4

C
ĄI5

A Ą C
ĄI6

pB Ą Cq Ą pA Ą Cq
ĄI7

pA Ą Bq Ą ppB Ą Cq Ą pA Ą Cqq

To see that the usage of ^ is necessary to prove transitivity of Ą, we show that in JDJ (that is
where ^ is not used to define Ą) transitivity does not hold.

Theorem 3.2.6. &JDJ pA Ą Bq Ą ppB Ą Cq Ą pA Ą Cqq.

11Since K does not occur neither in A nor in B, the conversion indicated by ˝ is not used.
12Such a derivation exists, since Cut is admissible in LJ even if Weakening and Axiom can be applied only with atoms

as principal formulae.
13Of course this is a far less important restriction since it just prevents from useless weakenings of separability.
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Proof. We have already established that strong separability holds for LJDJ, so if this formula is
a theorem, a sequent with void antecedent and it as succedent is provable using only rules for Ą
and Weakening. In particular this derivation will not use Cut. Ad absurdum let us consider such a
derivation of ñ pA Ą Bq Ą ppB Ą Cq Ą pA Ą Cqq in LJDJ. The last rule applied to derive this
conclusion can only be ñĄ, since the only other alternative ñWeak is excluded by &LJDJñ. So the
penultimate sequent of the derivation is A Ą B ñ pB Ą Cq Ą pA Ą Cq. Since the antecedent is not
void, this can not be the conclusion of an application ofñĄ. It can not be the conclusion of Weakening
because &LKñ A Ą B and &LKñ pB Ą Cq Ą pA Ą Cq, so a fortiori they can not be provable in
LJDJ. So it has to be the conclusion of Ąñ, with premisses: ñ A and B ñ pB Ą Cq Ą pA Ą Cq.
But none of these is derivable in LJDJ, since they are not derivable in LK. This is absurd, so
&LJDJñ pA Ą Bq Ą ppB Ą Cq Ą pA Ą Cqq.

It is obvious that if pA Ą Bq Ą ppB Ą Cq Ą pA Ą Cqq were provable in SASCLJ using only Ą then
it would be provable also in SASCLJDJ. So we have that the meaning of intuitionistic implication
depends on that of conjunction.

Implication does not depend on other constants apart from conjunction

Theorem 3.2.7 (SASCNJ conservatively extends SASCNJ^Ą). If A $SASCNJ B and the only
connectives that occur in tAu Y tBu is Ą, then A $SASCNJ^Ą B. The same holds if also ^ occurs in
tAu Y tBu.

Proof. If A $SASCNJ B and the only connectives that occur in tAu Y tBu is Ą, then we know by
theorems 3.2.2 and 3.2.1 that $LJ A ñ B.14 Let us consider a Cut-free derivation of A ñ B in LJ
in which only Ą-formulae occur.15 The translations used in proof B.1.2 and B.1.2 give us the desired
SASCNJ-derivation, in which only the rules corresponding to those used by LJ are applied, apart
from those obtained by the translation of Cont ñ, Weak ñ, Perm ñ, Cut and by occurrences of
As ñ, that are all ^-rules. Also, it can be easily seen that only atomic, ^ and Ą-formulae occur
in the obtained derivation. So separability holds for the derivation that we obtain at the end of this
process.

Disjunction and Implication

The same proof procedure seen until now can be used to prove clause 5 regarding consequences about
Ą and _ (and ^).

Theorem 3.2.8 (SASCNJ conservatively extends SASCNJ^_Ą). If A $SASCNJ B and the only
connectives that occur in tAu Y tBu are Ą and _, then A $SASCNJ^_Ą B. The same holds if also ^
occurs in tAu Y tBu.

Conjunction and negation

The same proof procedure seen until now can be used to prove clause 6.

Theorem 3.2.9 (SASCNJ conservatively extends SASCNJ^ ). If A $SASCNJ B and the only
connective that occurs in tAu Y tBu is  , then A $SASCNJ^ B. The same holds if also ^ occurs in
tAu Y tBu.

Disjunction and negation

The same proof procedure seen until now can be used to prove clause 7.

Theorem 3.2.10 (SASCNJ conservatively extends SASCNJ^_ ). If A $SASCNJ B and the only
connectives that occur in tAu Y tBu are  and _ then A $SASCNJ^_ B. The same holds if also ^
occurs in tAu Y tBu.

14Since K does not occur neither in A nor in B, the conversion indicated by ˝ is not used.
15Such a derivation exists, since Cut is admissible in LJ even if Weakening and Axiom can be applied only with atoms

as principal formulae.
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Negation and implication

The same proof procedure seen until now can be used to prove clause 8.

Theorem 3.2.11 (SASCNJ conservatively extends SASCNJ^Ą ). If A $SASCNJ B and the only
connectives that occur in tAu Y tBu are  and Ą then A $SASCNJ^Ą B. The same holds if also ^
occurs in tAu Y tBu.

Absurdity

We discuss separately the occurrence of K in the derivation, since in this case we can not prove
separability in the usual way, due to ˝-translation of theorem 3.2.1. Let us start by observing the
following theorem:

Theorem 3.2.12 (SASCNJ conservatively extends SASCNJK). If A $SASCNJ B and the only
logical constant that occurs in tAu Y tBu is K then A $SASCNJK B.

Proof. Since K is a 0-ary connective and we are developing a single-assumption, single-conclusion
system, the only possibilities are:

• K $ K, that is just an assumption;

• K $ B, that is an application of Efq ;

• A $ K, that is impossible in SASCNJ.16

So in every case, if the derivation holds in SASCNJ, it holds just applying Efq or Axiom, so without
using any other logical constant apart from K.

We can not extend the result to consequences in which K occurs together with other logical
constants in the same way done previously for  , Ą, etc. Indeed by relating to translation in LJ and
Cut elimination, we could be forced to use Ą and  all the time K is in the assumption or in the
conclusion. Indeed K˝ “  pE Ą Eq. But we can not accept this conclusion since the meaning of K
does not depends on that of  and Ą.17 We propose a different solution.

Theorem 3.2.13. If A $SASCNJ B, the only connectives necessary to derive B from A are those in
tAu Y tBu together with at most ^.

Proof. Let us consider the translation from LJ to SASCLJ in proof B.1.2. We can observe that if
we translate only Cut-free derivations of LJ, we obtain a derivation of SASCLJ in which we use Cut
only to translate applications of Conñ, Per ñ or to apply Associativity of conjunction. Let us call
these kind of Cut respectively: pCon ñq˚, pPer ñq˚ and pAs ñq˚. Let us also call semi-Cut-free a
derivation of SASCLJ in which only these Cuts occur. Since Cut-free LJ is equivalent to full LJ, we
conclude that semi-Cut-free SASCLJ is equivalent to full SASCLJ.18

By this result and theorem 3.2.2 (from SASCNJ to SASCLJ) we can assume that there is a
semi-Cut-free derivation of Añ B in SASCLJ. All the logical constants that occur in a semi-Cut-free
derivation occurs in the end-sequent apart from ^. This is the only constant that can vanish in the
derivation, since pConñq˚, pPer ñq˚ and pAsñq˚ are the only Cuts in the derivation and they can
erase only ^.19

Let us now consider the translation from SASCLJ to SASCNJ in proof B.1.2. In the SASCNJ-
derivation obtained from a Cut-free SASCLJ-derivation we use all and only the rules and formulae
used in the SASCLJ-derivation, apart from Efq used to translateñWeak and K used to translate the
void succedent. Nonetheless, these two exceptions are not relevant, since in order to apply ñ Weak
we need a void succedent, and in order to have it, we have to use ñ K or  ñ. So if K occurs in
the SASCNJ-derivation, it or  occur in the open assumption or in the conclusion.20 In our case
the SASCLJ-derivation is just semi-Cut-free, so we could have extra applications of ^-rules and
formulae. So in order to prove A $ B in SASCNJ we need to use only the rules for the connectives
in tAu Y tBu together with ^. This conclusion holds also for K, since there is no application of the
translation in LJ, and the extra occurrences of Efq are unproblematic.

16At least without further specification about atomic language.
17It is not so clear how to define the meaning of this term, but we will see that a solution can be found. Nonetheless,

it is blatantly obvious that it does not depend on that of Ą.
18This result has the strength of a theorem of existence of Cut-free derivation, not of a theorem of Cut elimination.
19To be honest, also this eventuality is very rare. It only happens with pCon ñq˚, and only when we contract a

conjunction that does not have any conjunctions between its subformulae.
20The proof is identical to that for SASCLJDJ.
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This theorem solve all the problems for separability apart from A $SASCNJ B when the only
connectives in tAu Y tBu are _ and K. In this case, since ^ does not occur neither in _I, nor in KI
(vacuously), it can not be necessary to derive A $ B.

Theorem 3.2.14. If A $SASCNJ B, and the only logical constants in tAu Y tBu are _ and K, then
A $SASCNJ_K B.

Proof. If A $SASCNJ B, then A $NJ B. Since NJ is strongly separable, there is a derivation of
A $ B in NJ in which only _ and K occur. Since the rules for these constants are the same in NJ
and in SASCNJ, this derivation holds also for this second system.

With this result, we conclude our proof of weak separability for SASCNJ.

3.2.2 Harmony

Definition of normal form

The idea of normalization is that if only I-rules define the meaning of logical constants, E-rules have
to be justified according to them. From the point of view of validity, this means that E-rules are
non-canonical derivations and so they are not self-justified. We can not derive E-rules from I-rules in
the standard meaning of the term ‘derive’. Otherwise, we could have a proof-system with only I-rules
for intuitionist and classical logic, and this is not the case.

The idea of harmony is that an application of E-rule can be erased when its major premise is
immediately derived using an I-rule. We call this process normalization, and two sets of rules (I and
E-rules) are in harmony if they allow for such a process. This characterization of harmony (that we
presented in section 1.2.1) is fine both for the traditional formulation of NJ and for JDJ, as we have
already seen, but it must be adapted to fit our other systems. The problem is that in our systems a rule
can manipulate more logical constants at the same time, so we need to consider lists of applications
of I and E-rules.

As an example, let us consider a derivation in which ĄE occurs.

d

pA Ą Bq ^ pD ^ Eq

rEs1

...
A

rB ^Ds1

...
C

ĄE1
C

The major premise pA Ą Bq^pD^Eq can not be derived directly using ĄI, since Ą is not its principal
connective. Does this mean that all derivations of this kind are normal? I do not think so. Indeed let
us consider these two rules:

A
tonkI

AtonkB
pAtonkBqt^Cu

rBt^Cus1

...
D

tonkE1
D

We can not criticize this pair of rules using our separability constraint, at least not prima facie.
Indeed there is not evident circularity in the way in which connectives are used in these rules since the
situation seems to be the same of_, so we respect meaning molecularity (definition 1.1.8). Nonetheless,
we find out that this pair of rules are unacceptable, for two connected reasons. Consider the following
derivation:

A

rAs1
tonkI

AtonkB rAs1
^I1

pAtonkBq ^A rB ^As2
tonkE2

B ^A

It proves that tonk violates separability since A &SASCNJ B ^ A, and that it violates harmony
since the conclusion can not be derived from the direct ground for pAtonkBq ^ A. So we can violate
harmony even though E-rules use more than one logical constant. We can also show that this pair of
rules rejects the thesis that the meaning of non-logical terms is independent of that of logical-terms,
since we can continue the derivation applying ^E and derive B from A. Indeed, as we already observed,
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separability and innocence of logic do not follow from meaning molecularity and absence of meaning
conferring logical-rules for atomic sentences, since they are global properties of the language.21 What
we want to develop in this section is a notion of harmony apt to reject the rules that violate these
restrictions, in the same way as we did in the section 1.2.2 of the first chapter.

The key idea of harmony is that if all the meaning of the major premise is given by I-rules, the
E-rule will just exploit this ground to derive its conclusion. Doing so, it gives us a non-canonical
ground for the conclusion. Harmony requires that, in this case, we can derive the same conclusion
canonically, using the grounds for the major premise of the E-rule. The full development of this idea
is demanded to the explicit formulation of validity in proof-theoretic semantics, as we saw.22

This picture is adequate also for our single-assumption system, but we have to acknowledge that
some E-rules exploit the meaning of more than one connective, and so we will be able to normalize
the derivation only if we have more than one I-rule in the direct derivation of the major premise. The
connectives used by an E-rules are those that occur in its schema. In case an E-rule uses the meaning
of both ^ and Ą to derive the conclusion, it is natural to ask that all these connectives are introduced
by their respective canonical grounds, in order to have normalization. We could be tempted to say
that ĄE is an elimination rule both for Ą and ^, but we must remember our separability results: the
meaning of ĄE depends on that of ^, but the opposite does not hold. So it is not strange to ask an
application of a ^-rule in order to use Ą. In other words, the applications of ĄE that we have to
normalize has the structure:

F

rF s3

rA^ F s1

...
B

ĄI1
A Ą B

rF s3

rF s2

...
D

rF s2

...
E

^I2
D ^ E

^I3
pA Ą Bq ^ pD ^ Eq

rEs4

...
A

rB ^Ds4

...
C

ĄE4
C

The other occurrences of E-rules that we have to normalize are:

D

rDs2

rA^Ds1

...
K

 I1
 A

rDs2

...
C

^I2
 A^ C

rCs3

...
A

 E3
K

E

rEs1

...
A

_I
A_B

rEs1

...
C

^I1
pA_Bq ^ C

rA^ Cs2

...
D

rB ^ Cs2

...
D

_E2
D

Of course, apart from these derivations, we still have those of SASCNJDJ to normalize. A
derivation in which none of these subderivations occur is in normal form. We can restate the same
definition using maximal formulae:

Definition 3.2.4 (Maximal formulae (SASCNJ)). Given a derivation D, a formula that occurs in
it is a maximal formula iff:

• it is conclusion of ‘I and major premise of ‘E, for a logical constant ‘; or

• it has the form pA_ Bq ^D, it is the conclusion of ^I and major premise of an application of
_E that discharges two assumptions that are major premises of two ^E; or

• it has the form A ^ B, it is the conclusion of an application of ^I that has a premise derived
using ‘I, and it is the major premise of ‘E.

21See section 1.1.3.
22See section 1.2.2.
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Existence of normal form

Theorem 3.2.15 (Existence of normal form for SASCNJ). If A $SASCNJ B, then there is a normal
derivation of B from A in SASCNJ.

Proof. If A $SASCNJ B, then $SASCLJ A ñ B (theorem 3.2.2). We have already seen that semi-
Cut-free derivations are complete for SASCLJ, so we know that there is such a derivation d for
Añ B.

The translation from SASCLJ to SASCNJ in proof B.1.2 uses only non-derived major premises
to translate Cut-free SASCLJ-derivations. So the only non-assumed major premises in the derivation
d˚, obtained by d by the translation, are due to pCon ñq˚, pPer ñq˚ and pAs ñq˚, that are the
only Cut in the SASCLJ-derivation. We call the SASCNJ-sub-derivations obtained by translating
these SASCLJ-sub-derivations pCon ñq˚˚, pPer ñq˚˚ and pAs ñq˚˚. It can be shown that the
only non-normality that we can obtain by these translations is when the end-formula of the chain of
pConñq˚˚, pPer ñq˚˚ and pAsñq˚˚ is a major premise of ^E. We show this and that in this case
we can normalize the derivation in proof B.2.2. At the end of the process, we have a derivation in
normal form.

It is just a theorem of existence because, despite the fact that it provides instructions to ob-
tain a normal SASCNJ-derivation starting from a semi-Cut-free SASCLJ-derivation, it does not
provide any instructions to obtain this semi-Cut-free SASCLJ-derivation from a standard SASCNJ-
derivation. We just know there has to be one because of the completeness of semi-Cut-free SASCLJ.

It is usually assumed that this kind of theorem is not enough for proof-theoretic semantics, and
so that normalization is necessary. This requirement is justified only by an intuitionist scepticism
regarding purely existential results. Since we will prove that also classical logic can be accepted in
our framework, we are not forced to prove normalization theorem in the strict sense.

3.2.3 Validity

Definitions 1.2.8 of validity in an atomic basis B and 1.2.9 of validity tout court can be used also for our
single-assumption and single-conclusion version of the calculi. What is in need of clarification is the
definition 1.2.6 of the standard notion of canonical derivation. Indeed, while in multiple-assumption
systems the normalization of a closed derivation always ends with the application of an I-rule, in a
single-assumption system this is not the case, so normalization can not be seen as a reduction to
the traditional canonical form. This observation follows from our characterization of the maximal
formulae for SASCNJ, since we decided to consider as maximal only some combinations of I and
E-rules. Indeed, our definition 3.2.4 of maximal formulae does not characterise formulae that are
conclusions of ^I and premises of _E, ĄE or  E as maximal, if other contextual conditions do not
occur. As a consequence, it seems that we can have closed derivations that end with an application
of an E-rule and that are not normalizable.

The main effect of this phenomenon is that while in standard proof-theoretic semantics the fun-
damental assumption (assumption 1.2.1) is controversial in general but at least provable for purely
logical closed derivations as a corollary to normalization,23 in this generalization this is not the case.
We will see that this is a big problem, especially for the classical system SASCNK. Nonetheless,
at least for the intuitionistic system SASCNJ that we are considering here, we can find a solution.
Indeed, while it does not follow as a corollary of normalization, we can nonetheless prove that for every
intuitionistic theorem, there is a closed derivation of it in this system that ends with an application
of an I-rule, that is we can prove that fundamental assumption holds at least in this case.24 Let us
look at this result:

Theorem 3.2.16 (Existence of canonical form for theorems of SASCNJ). If $SASCNJ A, then
there is a proof of A in SASCNJ that ends with an application of an I-rule.

Proof. Let us consider a Cut-free proof of ñ A in LJ. First of all, let us notice that this proof must
end with an application of a rule on the right. Indeed, in order to have a void antecedent (without
using Cut), we need to use ñ  and/or ñĄ multiple times. This means that, tracing back the
void antecedent from the endsequent, we find a number of applications of these rules such that every
sequent depending on them has a void antecedent, and so such that every rule applied after them is
a rule on the right.

23See note 52.
24That is all we can do also in standard proof-theoretic semantics regarding NJ.
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C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

pA_Bqt^Du

rAt^Dus

...
C

rBt^Dus

...
C

_E
C

A
_I

A_B

B
_I

A_B

tCu

rAt^Cus

...
Bt_Du

ĄI
pA Ą Bqt_Du

A Ą Bt^pD ^ Equ

rtEus

...
At_F u

rBt^Dus

...
C

ĄE
Ct_F u

tCu

rAt^Cus

...
KtBu

 I
 At_Bu

K
Efq

C
 At^Cu

rt Cus

...
At_Bu

 E
Kt_Bu

Table 3.3: SASCNK

According to the translation from LJ to SASCLJ in B.1.2, the order of the rules in the two
derivation is the same, apart from extra applications of pCon ñq˚, pPer ñq˚ and pAs ñq˚. So we
can obtain a derivation of ñ A in SASCLJ that ends with rules on the right followed at most by
pConñq˚, pPer ñq˚ and pAsñq˚.

According to the translation from SASCLJ to SASCNJ in B.1.2, the rules of introduction on
the right of SASCLJ are translated using I-rules of SASCNJ and the order of the application of
the rules is preserved if there are no applications of Cut. Moreover, the translation tells us also that
pCon ñq˚˚, pPer ñq˚˚ and pAs ñq˚˚ do not deal with the conclusion of the derivation in which
they are applied, but with the assumptions instead.

As a consequence, the translation that we obtain by composing the one from LJ to SASCLJ and
the other from SASCLJ to SASCNJ takes Cut-free derivations of ñ A in LJ in derivations that
end with an I-rule in SASCNJ. So for every intuitionistic theorem, we have a derivation that ends
with an introduction rule.

This result poses us in the same situation in which we are in standard proof-theoretic semantics.
We have no more and no fewer reasons to believe in the fundamental assumption, since it is provable
for purely logical theorems but controversial in the other cases. Adopting this assumption, we can
endorse the standard definition of validity and also the standard definition of canonical proof, although
normalization is not enough to give canonicity in this framework.

3.3 Classical logic

The SASC-system for classical logic is presented in table 3.3. Its peculiarity is that it allows both the
introduction of connectives in a subordinate position with respect to disjunction, and the elimination
of connectives that occurs in a subordinate position with respect to conjunction.

The meaning of the curly brackets is the same seen for SASCNJ. Nonetheless, its application to
the rules for negation is a little peculiar, so we should briefly address this point. For the  -rules, the
occurrence of K is an alternative to that of its disjunct. That is we take the abbreviation KtBu to
mean K if there is no B, and B otherwise. So we have the intuitionist rules plus:

tCu

rAt^Cus

...
B

 I
 A_B

 At^Cu

rt Cus

...
A_B

 E
B
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One could think that  I has to work also as a canonical way of deriving some kind of disjunction.
For example, consider the difference between this rule and ĄI in which _ already occurs in a premise.
Nonetheless, we will see that this strangeness does not pose any problem for separability, and the
meaning of _ in general does not depends on  I.25 So  I defines the meaning of  and refers to _I
for the definition of _. Since _ occurs in  I but is not canonically introduced, the meaning of  
depends on that of _ and not vice-versa.

We could instead consider  E as both an elimination rule for  , and an elimination rule for _.
Indeed, differently from ĄE, _ disappear in the conclusion, and there is no restriction of canonicity
for being an elimination rule.26 We will see that this is not a problem for harmony.

As for intuitionistic logic, the structural rules of LK corresponds to provable properties of conjunc-
tion and disjunction: idempotence of ^ and _ to Contraction on the left and on the right respectively,
and commutativity of ^ and _ to Permutation on the left and on the right respectively. Associativity
of ^ and _ corresponds instead to the fact that formulae in antecedent and succedent are all at the
same level.

Definition 3.3.1 (Disjunction of succedent). Given a list of formulae ∆, ∆_ is the class of all the
possible associations of disjunction of all the formulae δ P ∆. Formally, ∆_ “ tpxq _ pyq | x P
Λ_ & y P Θ_ & pΛ,Θq∆u, if ∆ has more than one element. ∆_ “ ∆, otherwise. $ Γ^ ñ ∆_

and Γ^ $ ∆_ are used as abbreviations for $ tAu ñ tCu and tAu $ tCu for every combination of
A P Γ^ and C P ∆_. In brief, the result has to be provable for every element of Γ^ and ∆_, regardless
of the position of parenthesis.

Theorem 3.3.1 (Equivalence between LK and SASCLK). Sequent calculi LK and SASCLK are
equivalent to each other, that is:

1. If $LK Γ ñ ∆, then $SASCLK Γ^ ñ ∆_;

2. If $SASCLK D ñ C, then $LK Γ˝ ñ C˝.

Proof. The proof is in B.1.3.

Theorem 3.3.2 (Equivalence between SASCLK and SASCNK). The sequent calculus SASCLK
and the natural deduction system SASCNK are equivalent to each other, that is:

1. (a) if $SASCLK Añ B, then:

• Or A $SASCNK B;

• Or $SASCLKñ B and $SASCNK B.

(b) If $SASCLK Añ, then A $SASCNKK.

2. (a) If A $SASCNK B then $SASCLK Añ B.

Proof. The proof is in B.1.3.

Theorem 3.3.2 in combination with theorem 3.3.1 shows that SASCNK is adequate for classical
logic.

3.3.1 Separability

By looking at the I-rules of SASCNK we obtain the following clauses:

1. To prove a consequence in which only ^ occurs, we need to use only ^-rules and ^-formulae;

2. To prove a consequence in which only _ occurs, we need to use only _-rules and _-formulae;

3. To prove a consequence in which only ^ and _ occur, we need to use only _-rules, ^-rules,
_-formulae and ^-formulae;

4. To prove a consequence in which only Ą occurs, we need to use only Ą-rules, ^-rules, _-rules,
Ą-formulae, ^-formulae and _-formulae (the same holds for consequences in which only Ą and
^ and/or _ occur);

5. To prove a consequence in which only  occurs, we need to use only  -rules, ^-rules, _-rules,
Efq,  -formulae, ^-formulae, _-formulae and K (the same holds for consequences in which only
 and ^ and/or _ occur);

6. In every other cases, we can use every constant to derive the consequence.
25Indeed the purely disjunctive fragment of classical logic is equivalent to the same fragment of intuitionistic logic.
26For the same reason we proposed to consider _E, ĄE and  E of SASCNJ as E-rules also for ^, even though this

is almost irrelevant for harmony due to the particular structure of non-normalities in intuitionistic logic.
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Conjunction and disjunction

Since the ^_-fragment of classical logic is equivalent to that of intuitionistic logic and we have shown
the adequacy of our systems for those logics, the proof already used for SASCNJ still holds for
SASCNK. So there is no need to restate clauses 1, 2 and 3.

Implication

Disjunction is necessary to derive purely implicational consequences. The standard example is Peirce
law. To complete the proof of clause 4, we have:

Theorem 3.3.3 (SASCNK conservatively extends SASCNK^_Ą). If A $SASCNK B and the only
connectives that occur in tAu Y tBu is Ą, then A $SASCNK^_Ą B. The same holds if also ^ and/or
_ occurs in tAu Y tBu.

Proof. If A $SASCNK B and the only connectives that occur in tAu Y tBu is Ą, then we know by
theorems 3.3.2 and 3.3.1 that $LK Añ B.27 Let us consider a Cut-free derivation of Añ B in LK in
which only Ą-formulae occur.28 The translation used in proof B.1.3 gives us a SASCLK-derivation in
which the only Cuts are obtained by translations of Contñ, Weak ñ, Permñ, ñ Cont, ñWeak,
ñ Perm and ñ ^ or from occurrences of As ñ and ñ As. These Cuts do not erase any logical
constants, apart from those obtained from Contractions that can erase ^ or _. So in the derivation
there are only the logical constants in A and B plus ^ and _, and only the rules for these constants
are applied. The translation used in proof B.1.3 translates ñ b with bI, b ñ with bE and Cut using
^ and _-rules, so we have a derivation of A $ B in SASCNK in which only the rules for ^, _ and
Ą are applied, and in which no other connective occurs.

Negation

The same proof procedure can be used for clause 5 :

Theorem 3.3.4 (SASCNK conservatively extends SASCNK^_ ). If A $SASCNJ B and the only
connective that occurs in tAu Y tBu is  , then A $SASCNJ^_ B. The same holds if also ^ and/or
_ occurs in tAu Y tBu.

Absurdity

Theorem 3.3.5 (SASCNJ conservatively extends SASCNJK). If A $SASCNK B and the only
logical constant that occurs in tAu Y tBu is K then A $SASCNKK B.

Proof. The same proof of theorem 3.2.12.

Theorem 3.3.6. If A $SASCNK B, the only connectives necessary to derive B from A are those in
tAu Y tBu together with at most ^ and _.

Proof. Let us consider the translation from LK to SASCLK in proof B.1.3. We can observe that if
we translate only Cut-free derivations of LK, we obtain a derivation of SASCLK in which we use
Cut only to translate applications of Conñ, Per ñ, ñ Con, ñ Per, ñ ^ or to apply Associativity
of conjunction or disjunction. Let us call these kind of Cut respectively: pCon ñq˚, pPer ñq˚,
pAs ñq˚, pñ Conq˚, pñ Perq˚, pñ Asq˚ and Distri_^. Let us also call semi-Cut-free a derivation
of SASCLK in which only these Cuts occur. Since Cut-free LK is equivalent to full LK, we conclude
that semi-Cut-free SASCLK is equivalent to full SASCLK.29

By this result and theorem 3.3.2 (from SASCNK to SASCLK) we can assume that there is a
semi-Cut-free derivation of Añ B in SASCLK. All the logical constants that occur in a semi-Cut-
free derivation occurs in the end-sequent apart from ^ and _. This is the only constant that can
vanish in the derivation, since pCon ñq˚, pPer ñq˚, pAs ñq˚, pñ Conq˚, pñ Perq˚, pñ Asq˚ and
Distri_^ are the only Cuts in the derivation and they can erase only ^ and _.30

27Since K does not occur neither in A nor in B, the conversion indicated by ˝ is not used.
28Such a derivation exists, since Cut is admissible in LK even if Weakening and Axiom can be applied only with

atoms as principal formulae.
29This result has the strength of a theorem of existence of Cut-free derivation, not of a theorem of Cut elimination.
30To be honest, also this eventuality is very rare. It only happens with pCon ñq˚ for ^ and pñ Conq˚ for _,

and only when we contract a conjunction (disjunction) that does not have any conjunctions (disjunctions) between its
subformulae.
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Let us now consider the translation from SASCLK to SASCNK in proof B.1.3. In the SASCNK-
derivation obtained from a Cut-free SASCLK-derivation we use all and only the rules and formulae
used in the SASCLK-derivation, apart from Efq used to translate ñ Weak and K used to trans-
late the void succedent. Nonetheless, these two exceptions are not relevant, since in order to apply
ñWeak we need a void succedent, and in order to have it, we have to useñ K or  ñ. So if K occurs
in the SASCNK-derivation, it or  occur in the open assumption or in the conclusion.31 In our case
the SASCLK-derivation is just semi-Cut-free, so we could have extra applications of ^_-rules and
formulae. So in order to prove A $ B in SASCNK we need to use only the rules for the connectives
in tAu Y tBu together with ^ and _. This conclusion holds also for K, since there is no application
of the translation in LJ, and the extra occurrences of Efq are unproblematic.

To complete the proof of separability, we still have to consider two cases: A $SASCNK B when the
only connectives in tAu Y tBu are _ and K, and when the only connectives in tAu Y tBu are ^ and
K. In the first case, since ^ occurs neither in _I, nor in KI (vacuously), it should not be necessary to
derive A $ B. In the second case, since _ occurs neither in ^I, nor in KI (vacuously), it should not
be necessary to derive A $ B. Let us prove it.

Theorem 3.3.7. If A $SASCNK_^K B, and the only logical constants in tAu Y tBu are _ and K,
then A $SASCNK_K B.

Proof. SASCNK_^K is formally equivalent to SASCNJ_^K.32 So, since we know by theorem 3.2.14
that SASCNJ_^K conservatively extends SASCNJ_K, we know that SASCNK_^K conservatively
extends SASCNK_K.

Theorem 3.3.8. If A $SASCNK_^K B, and the only logical constants in tAu Y tBu are ^ and K,
then A $SASCNK^K B.

Proof. SASCNK_^K is formally equivalent to SASCNJ_^K. We know by theorem 3.2.13 that
SASCNJ_^K conservatively extends SASCNJ^K, since the only logical constant that can be neces-
sary to prove a consequence and does not occur in it is ^. So SASCNK_^K conservatively extends
SASCNK^K.33

3.3.2 Harmony

Definition of normal form

Let us see the effect of allowing the introduction of connectives in a subordinate position for the
definition of normal form. Steinberger34 observes that in the derivation

C

rA^ Cs1

...
B _D

ĄI1
pA Ą Bq _D

rA Ą Bs2

...
E

rDs2

...
E

_E2
E

the major premise pA Ą Bq _D of _E is derived by an I-rule, so its derivation is the direct ground
for it. But if this is right, it should be possible to normalize this derivation, while there is no reason
to believe that this is the case.

Let us argue that this reduction is not necessary to have normalizability, since it does not deal
with a real violation of normality. ĄI does not define the meaning of _, since SASCNK_Ą is
a conservative extension of SASCNK_. So, we do not have a real maximal form in this case:
Steinberger’s counterexample is just obtained applying Prawitz’s definition of maximal formula to
Milne’s system without questioning its suitability. In order to obtain a maximal formula, we have to
use completely the meaning of Ą, that is we have to apply its E-rule. Since the meaning of Ą depends
on that of _ (and ^, of course) it is not absurd that we need an application of _E as a precondition
for the applicability of ĄE. A reduction should remove the application of Ą-rules, possibly without
touching _-rules. Indeed, following a suggestion of Milne himself, we consider maximal a conclusion
of ĄI only of the following kind:35

31The proof is identical to that for SASCLJDJ.
32They are composed by the same rules.
33Let us notice that this proof procedure works only for ^, _ and K. Luckily we already have the other cases for

theorem 3.3.6.
34This worry is extensively exposed in [Steinberger, 2008], and re-marked in [Steinberger, 2011b], p. 345. It is directly

used against Milne’s system, but it can be used also against my reformulation.
35[Milne, 2002], p. 518-519.
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C

rA^ Cs1

...
B _D

ĄI1
pA Ą Bq _D

rA Ą Bs3

H

...
A_ F

rBs2

...
G

ĄE2
G_ F

...
E

rDs3

...
E

_E3
E

According to this position, the only derivations that we have to make normal are this and:

C

rA^ Cs1

...
B

 I1
 A_B

r As2

H

...
A_ tDu

 I1
KtDu

...
E

rBs2

...
E

_E2
E

In order to show why we want to be able to eliminate this kind of maximal formulae, let us consider
the following generalization of tonk :

At_Cu
tonkI

pAtonkBqt_Cu pAtonkBqt^Cu

rBt^Cus1

...
D

tonkE1
D

This pair of rules is unacceptable because they generate a maximal formula that can not be reduced:

A_B
tonkI

pAtonkBq _B

rAtonkBs2 rBs1
tonkE1

B rBs2
_E2

B

Indeed, since A_B &SASCNK B, there is no possibility of finding a normal derivation with the same
conclusion and assumption. In order for the reduction to be possible, from tonkI, _E and tonkE
we should derive only consequences already derivable without tonk -rules.36 So our request regarding
maximal formulae is well-posed.

Instead, we should not ask for normalization of derivations in which an application of _I and an
application of ĄI are used to derive the major premise of an application of _E. Indeed the meaning
of _ does not depend on that of Ą, but the opposite does hold. So it is completely acceptable that in
order to apply Ą-rules we need to introduce disjunction and later remove it.

We also have to consider the generalizations of the other non-normality already seen for SASC-
NJDJ and SASCNJ, obviously. In these cases we have:

F

rF s3

rA^ F s1

...
B

ĄI1
A Ą B

rF s3

rF s2

...
D

rF s2

...
E

^I2
D ^ E

^I3
pA Ą Bq ^ pD ^ Eq

rEs4

...
A_ F

rB ^Ds4

...
C

ĄE4
C _ F

and

36In the same way as, regarding SASCNJ version of tonk, from tonkI, ^I and tonkE we should derive only consequences
already derivable without tonk -rules. See section 3.2.2.

81



D

rDs2

rA^Ds1

...
K

 I1
 A

rDs2

...
C

^I2
 A^ C

rCs3

...
A_B

 E3
K

Let us now consider the problem if the usage of _ made in the minor premises of ĄE and  E is
justified. This is not a real problem at all, since we already proved that Ą-rules and  -rules do not
modify the meaning of _ already given by its proper rules. Indeed we already applied this reasoning
to intuitionistic logic, in order to establish that ĄE does not count also as an elimination rule for
conjunction. This is the reason why we discuss separability before harmony. So there are no maximal
formulae of this kind.

To sum up, we have the following definition of maximal formulae:

Definition 3.3.2 (Maximal formulae (SASCNK)). Given a derivation D, a formula that occurs in
it is a maximal formula iff:

• it is conclusion of ‘I and major premise of ‘E, for a logical constant ‘; or

• it has the form A _ B, it is the conclusion of ‘I for a logical constant ‘ ‰ _ and ‘ ‰ ^ and
major premise of an application of _E that discharges an assumption that is major premise of
‘E; or

• it has the form pA_ Bq ^D, it is the conclusion of ^I and major premise of an application of
_E that discharges two assumptions that are major premises of two ^E; or

• it has the form A ^ B, it is the conclusion of an application of ^I that has a premise derived
using ‘I, and it is the major premise of ‘E.

Existence of normal form

Theorem 3.3.9 (Existence of normal form for SASCNK). If A $SASCNK B, then there is a normal
derivation of B from A in SASCNK.

Proof. If A $SASCNK B, then $SASCLK A ñ B (theorem 3.3.2). We have already seen that semi-
Cut-free derivations are complete for SASCLK, so we know that there is such a derivation d for
Añ B.

The translation from SASCLK to SASCNK in proof B.1.3 uses only non-derived major premises
to translate Cut-free SASCLK-derivations. So the only non-assumed major premises in the derivation
d˚, obtained by d by the translation, are due to pConñq˚, pPer ñq˚, pAsñq˚, pñ Conq˚, pñ Perq˚,
pñ Asq˚ and Distri_^ that are the only Cut in the SASCLK-derivation. We call the SASCNK-
sub-derivations obtained by translating these SASCLK-sub-derivations pCon ñq˚˚, pPer ñq˚˚,
pAs ñq˚˚, pñ Conq˚˚, pñ Perq˚˚, pñ Asq˚˚ and pDistri_^q˚˚. It can be shown that the only
non-normality that we can obtain by these translations is when the end-formula of the chain of
pCon ñq˚˚, pPer ñq˚˚ and pAs ñq˚˚ is a major premise of ^E or when the first-formula of the
chain of pñ Conq˚˚, pñ Perq˚˚ and pñ Asq˚˚ is a conclusion of _I. So in particular, pDistri_^q˚˚

does not cause any non-normality. We show this and that, in this case, we can normalize the derivation
in proof B.2.3. At the end of the process, we have a derivation in normal form.

3.3.3 Validity

For the validity of SASCNK we have the same problems that we saw about SASCNJ: there are
normal closed derivations that are purely logical but that do not end with an application of I-rules.
Indeed let us consider the following derivation:

rAs
1

_I
K_A

ĄI1
pA Ą Kq _A

rA Ą Ks
2

_I
A_ pA Ą Kq

rAs
2

_I
A_ pA Ą Kq

_E2
A_ pA Ą Kq
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We need the last application of _E in order to permute the disjunction, since ĄI can introduce the
conditional only on the left disjunct.

Of course, we could think to extend the system with extra rules to deal with this problem (as an
example we could assume another I-rule for the introduction of Ą on the right disjunct). Nonetheless,
this is a very easy case in which we need a concluding application of E-rules, there could be other
more complicated. Moreover, the main problem remains: we have pairs of I and E-rules that are not
maximal, so we can not expect that the normalization of closed derivation gives us always derivations
that end with an I-rule.

We saw in section 3.2.3 that we can circumvent this problem for SASCNJ, at least in order to
prove the existence of canonical proofs for intuitionistic theorems (that is the fundamental assumption
for intuitionistic theorems). Unfortunately, we can not have the same result for SASCNK. Indeed in
proving theorem 3.2.16, we used the fact that the composed translation from LJ to SASCNJ requires
only well-behaved rules that do not add extra E-rules on the end of the derivation. Nonetheless, a
similar translation from LK to SASCNK needs applications of pñ Conq˚˚, pñ Perq˚˚, pñ Asq˚˚

and pDistri_^q˚˚ inter alia, and these cause extra applications or E-rules in the end. So we can not
extend this result to the classical system, and we have to consider some revisions of the notions of
canonicity and/or of the role of fundamental assumption in the definition of validity.

Since both the notion of canonicity and the fundamental assumption are at the bottom of the
notion of validity developed in proof-theoretic semantics, the only way of saving this framework is to
extend the notion of canonicity in the following way:

Definition 3.3.3 (Canonical derivation (SASCNK)). A canonical derivation for a non-atomic sen-
tence is a normal closed derivation that has only valid immediate subderivations.

With this redefinition, we can justify the fundamental assumption at least for logical derivations.
The only other option is a complete reorganization of the plan of proof-theoretic semantics.

We have good reasons both to believe and to disbelieve that this redefinition of concepts is ac-
ceptable. Indeed on one side we argued that an eventual normalization when we have a pair of I and
E-rules that does not constitute a maximal formula is not only impossible, but also pointless from
the point of view of our theory of meaning, so it seems reasonable to conclude that those normal
closed derivations are canonical as well.37 On the other side this could be problematic for our direct
characterization of validity because, while derivations that end with an application of an I-rule and
that have only valid immediate sub-derivations are valid by definition, this is not the case for deriva-
tions that end with an application of an E-rule. Indeed E-rules are not meaning-conferring rules,
and so they need a justification. This problem displays a situation in which harmony and validity
seem to point to opposite solutions, although probably we could solve the disagreement by letting to
harmony and normalizability an even stronger role in the definition of validity. In this work, we will
accept provisionally the redefinition of canonical derivation, in such a way to warrant validity for all
well-formed derivations of SASCNK. Nonetheless, this point has to be recognised as a loose end.38

37In this way the availability of canonical proofs for intuitionistic theorems according to the old notion of canonicity
is just a frivolous extra property, devoid of real meaning-theoretic significance.

38I want to specify that, given our reinterpretation of Dummett’s argument against multiple-conclusion logic discussed
in chapter 2, a single-assumption and single-conclusion approach is mandatory for proof-theoretic semantics. So a
negative answer to this proposal of redefinition of canonicity would mark a great problem for proof-theoretic semantics
in general.
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Chapter 4

Pluralism

4.1 Which relation between the logics?

4.1.1 Deviance or extension?

As a matter of fact, we developed different logical systems and we proved that all of them are valid
according to our criterion. This situation forces us to deal with two topics that are nowadays very
developed: logical disagreement and logical pluralism. We will try to find a position that is both
coherent with the inferentialist framework that we developed in the rest of the thesis and acceptable
from a general philosophical perspective.

As a starting point, I want to specify which kind of logical disagreement we are dealing with.
Following a classification proposed by Susan Haack, we distinguish between deviation and extension:1

Extension: A logic is an extension of another logic iff it is a conservative extension (definition 1.2.10)
of it.

Deviation: A logic S is a deviance of another logic S 1 iff they are expressed in the same language
L and prove different sets of consequences.

The category of ‘deviation’ is quite various: it collects both cases in which one of the two logics is a
sub-logic of the other one (like classical logic and intuitionist logic, at least accepting the homophonic
translation), and cases in which this is not the case (like relevance logic and intuitionist logic, at least
accepting the homophonic translation). We also have another possibility, that is:

Quasi-deviation: A logic is a quasi-deviation of another logic iff they are not expressed in the same
language, but none of them is a conservative extension of the other one.

For example, classical logic is a quasi-deviance in relation to the negation-free fragment of intuitionistic
logic. Indeed we have a syntactical extension, since we add  to the vocabulary, but we do not have a
conservative extension, since ppA Ą Bq Ą Aq Ą A is a classical but not intuitionist theorem that can
be expressed in the old, negation-free vocabulary. Susan Haack points out that every time in which
we have a quasi-deviation, we can obtain a deviation between the logic formulated using the narrower
vocabulary and a subsystem of the other logic, obtained by removing the additional logical terms.
Indeed, in the example just seen, we have a deviation between classical and intuitionistic negation-free
fragments. Haack’s observation is unobjectionable from a formal point of view, but it is not clear at all
that we could find a good formulation of the required subsystem.2 In general, it could even be an open
question the existence of an axiomatization for this subsystem, and in the inferentialist perspective
that we outlined in the first chapter we posed quite strong restrictions to be considered apart from
pure axiomatizability.3 For this reason, we will see that in our inferentialist approach quasi-deviation
represent a core problem, tied to the desideratum of separability and analyticity.

Apart from the problematic point of quasi-deviation, the main difference between deviance and
extension is based on conservative extension. We applied the notion of conservative extension already
at the beginning of this thesis. Nonetheless, we saw its application only inside a language, when we

1[Haack, 1974], p. 4.
2Indeed we already saw the problem of formulating the classical negation-free fragment in a single conclusion system

in section 1.1.3 and later in more details in section 2.2.
3A case in which the axiomatizability of a fragment of logic was disputed is relevance logic. For many years it was

dubious whether it were possible to axiomatize completely the implicational fragment of R, even though it is nonetheless
true that exists a set of purely implicational theorems of this logic. [Dunn and Restall, 2002], p. 7.
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were dealing with the problem of separability of the logical constants. Here instead the problem is
the relation between terms of different languages, so here we have a much more complex philosophical
problem because we have to deal with translations.4 That is, taken for granted Haack’s distinction,
its applicability is not so clear in cases where the homophonic translation is not indisputable.5

Let us briefly consider two examples of logics that apparently deviate from classical logic, but that
could be considered extensions of it if we decide to abandon homophonic translation: intuitionistic
logic and relevance logic.

We could see intuitionistic logic as deviant with respect to classical logic, since they are usually
formulated using the same vocabulary and validate different sets of logical consequence. Nonetheless,
classical logic can be translated into intuitionistic logic in such a way that a formula is a classical
theorem iff its translation is an intuitionistic theorem. Indeed, let us call this translation ˚:

• A˚ “  i iA for atomic A;

• pA^c Bq
˚ “ pA˚ ^i B

˚q;

• pA_c Bq
˚ “  ip iA

˚ ^i  iB
˚q;

• p cAq
˚ “  iA

˚;

• pA Ąc Bq
˚ “ pA˚ Ąi B

˚q.

It can be proved that Γ $c C iff Γ˚ $i C
˚.6

There is also a well-known translation between intuitionistic logic and modal logic S4, so we could
argue that the real face of intuitionistic logic is a modal extension of classical logic. The translation
‹ is defined as:

• p‹ “ lA for atomic A;

• pA^i Bq
‹ “ lpA‹ ^c B

‹q;

• pA_i Bq
‹ “ lpA‹ _c B

‹q;

• p iAq
‹ “ l cA

‹;

• pA Ąi Bq
‹ “ lpA‹ Ąc B

‹q.

In this way, A is an intuitionistic theorem iff A‹ is a theorem of S4.7 This translation could seem
to be related with a very common and intuitive reading of intuitionistic connectives; for example
the reading of  ip as “it is impossible that p”. This interpretation is not available for ˚, since it
translates negation homophonically, while for ‹ it is arguably acceptable. Susan Haack rejects this
explanation because she argues that ‹ does not translate negation in the expected way.8 Nonetheless,
her analysis is deeply related to the traditional conception of intuitionistic logic originated from the
works of Brouwer and Heyting. Maybe another non-classical reading of intuitionistic logical constants
could suit well to the translation ‹.

In the same way, relevant logic rejects classical material conditional, proposing a deviance at least
regarding this constant. Nonetheless, classical logic and FDE (that is a subsystem common both to
R and E, the major relevant systems, in which conditional does not occur) share the same theorems
in their ^_ -fragments. So, since classical conditional can be defined using disjunction and negation,
there is a clear sense in which relevance logic is an extension of classical logic instead of a deviation.9

It seems clear that it is impossible to find a good answer to these doubts between homophonic
deviances or non-homophonic extensions without a precise theory of meaning. So already the appli-
cation of Haack’s categorisation is a controversial departure point. Anyway, we can apply it at least
in a negative way: we will not consider logics that are explicitly and unquestionably extensions one
of the other. We can have doubts about the existence of genuine rivalry between logics, but it is
unquestionable that, for example, modal logic is a (non-deviant) extension of classical logic. Here we
will consider only logics that are at least candidate for deviance, although without taking for granted
their philosophical status.

4A hardcore Wittgensteinian could object that there is the same problem also inside one language. This at least is
the interpretation given by Dummett of the philosophical works of Wittgenstein about foundations of mathematics.

5And I will argue that there is no such thing as an indisputable homophonic translation.
6This result was discovered independently by Gentzen ([Gentzen, 1969c]) and Gödel ([Gödel, 1986b]), and is grounded

on Glivenko’s theorem. For a recent exposition: [Mints, 2000], pp. 23-24.
7Also this result has been pointed out for the first time by Gödel (in his [Gödel, 1986a]), and has since then become

common knowledge in the literature about modal logic: [Hughes and Cresswell, 1996], p. 225.
8[Haack, 1974], p. 97.
9[Dunn and Restall, 2002], pp. 30-31.
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4.1.2 Disagreement and pluralism

We selected apparent deviance as our topic, we now have to deal with its philosophical nature. Fist of
all, let us define precisely what are the problems that we want to solve. I think that we can summarize
them in two questions:

1. Is there disagreement between two different (and non-equivalent) logical systems? That is:

(a) Can there be disagreement between two different (and non-equivalent) logical systems?

(b) Does there has to be disagreement between two different (and non-equivalent) logical sys-
tems?

2. Can there be more than one (correct) logic?

Using Haack’s expressions, essentially the first question is about the existence of real deviance between
logics, while the second asks about consequences for the monism-pluralism debate about logic. An
answer to the first question is a major ingredient in an answer to the second, of course, so we will try
to follow this order. The answers to these questions determine whether for example SASCNK has
to be considered as a revision of SASCNJ or as an alternative logical system that can coexist with
the second one. It is an intuitive belief that if two logics disagree, then at most one of them can be
right, while if there is no real disagreement they can be both true “at the same time”. In the first
case, SASCNK can only be seen as a revision of SASCNJ, while in the second case they are in
some way independent.

It is interesting to notice that a negative answer to the first question does not directly speak for a
case of extension, even though it speaks against the existence of real deviance. Indeed, Haack’s dis-
tinction between deviance and extension is complete (apart from the already mentioned intermediate
case of quasi-deviance) only if we accept some kind of translation. Nonetheless, this seems to be an
unquestioned starting point of Haack’s analysis.

Given a logic, an apparently deviant logic can speak about

• The same logical terms; or

• some other logical terms.10

It seems that according to Susan Haack in the second case there has to be a suitable translation between
one of the two logic into (an extension of) the other one. Of course, this is always achievable from a
formal point of view, but it is not clear whether this formal result can be paired with a philosophical
result about the intended meaning of the logics. Indeed the interpretation of an apparently deviant
logic as an extension does not seem to suit well to some reading of deviance as “change of topic”
that we will encounter. The search for an interpretation of a logic into another one is only one of
the arguments against real deviance. So if in some cases we will find reasons to reject real deviance
without the possibility of reinterpreting one of the logics as extending the other, we will reject the
completeness of Haack’s categorization: we can have two logics that are neither in real disagreement,
nor one the extension of the other.

The division of the first question in two different sub-questions allows us to give different answers
about different pairs of logics, at least if we find good reasons to answer positively to the first and
negatively to the second sub-question. In the midst of all these problems, we can at least relate to
some principles that I will not question.

We will accept the principle:

Observation 4.1.1 (Disagreement and subject). There is disagreement between two logics iff they
speak about the same logical terms and the do not prove the same logical consequences.

So the main problem with disagreement will become a problem of identity for logical terms.
A second principle that we consider acceptable is:

Observation 4.1.2 (Disagreement and right logic). If there is real disagreement between two logics,
then at most one of them can be right.

This principle has been criticized by Beall and Restall in a series of papers. These authors argue
for a kind of logical pluralism in which two rival logics can be both true. We will see that their
proposal is unacceptable in our inferentialist perspective (and maybe also non-conclusive in their
realist perspective).

10The reference of Susan Haack to classical logic is inessential in this case: we are interested in the possibility of
deviance in general.
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Since the discrimination between real disagreement and purely apparent rivalry is given by the
identity of logical terms, and since it seems obvious to propose an identity criterion based on meaning,
the development of a theory of meaning for logical terms seems to be a conditio sine qua non for
answering our worries.11 Anyway, first of all we will try to address the first question in general,
without focusing on any theory of meaning in general. We will try to answer this problem about the
identity of logical terms quidquid ea sunt. We will nonetheless see that this approach reaches its limits
very soon, and change approach, grounding our research on a theory of meaning.

4.2 Quidquid ea sunt approach

4.2.1 Quine and the Principle of Charity

The problem of disagreement between different logical systems, that is the problem of the possibility
of real deviance in logic dates back at least to the debate between Carnap and Quine.

Carnap has been the first to propose a kind of logical pluralism with his Principle of Tolerance.12

Nonetheless, he never focused on how to translate a language into another one. Indeed most of Quine’s
criticisms on his philosophy of logic are based on this problem. The reason for this lack is that in his
opinion every logic corresponds to a linguistic framework, and linguistic frameworks are essentially
theoretically incomparable, even though they can be compared pragmatically.13 There can not be real
disagreement between logics like there is no real disagreement between Euclidean and non-Euclidean
geometries. They are in contradiction only if they are applied to the same pragmatical purpose –
for example, only one geometry will describe correctly the physical universe – and the existence of
translations between them tells nothing about the meaning of their terms. So, in the same way in
which the only validity criterion for a geometrical sentence is relative to a geometry, the only validity
criterion for an argument is relative to a logical system.14 That is Carnap rejects the notion of external
validity, the only kind of validity is internal to a system: the question if a rule of inference is valid
in general (and not in a precise system) makes no sense.15 Since this attitude regarding validity
and his focus on pragmatical criteria for selecting the ‘right’ logic, it is not surprising that he did
not consider central the issue of real disagreement between logics. We can so conclude that Carnap
answers negatively to our question 1: since there is nothing like external validity, there is nothing
like two different logical systems speaking about the same logical terms. In some sense, the question
whether two logics speak about the same logical terms seems to be meaningless according to Carnap,
and we need a strong, positive answer in order to have a disagreement. The conclusion about pluralism
is that there is nothing that speaks against it, even though without a clear notion of validity it is not
clear whether we obtain what we were looking for.16

Quine gives a somewhat opposite solution both to the problem of identity of logical terms and to
the problem of logical pluralism. His main reasons for challenging Carnap’s position are grounded in
observations about ideal conditions of translation.17

In his [Quine, 1976a] (and then in more detail in [Quine, 1986]) the author argues that when we
have to translate a logical system into another one, we can choose essentially between two principles:

Principle of homophony: when in two languages L and L1 we have two logical terms ‘ and ‘1

that sound the same, we should translate one with the other;

Principle of charity: when we translate a sentence from one language L into another language L1,
we should assume that this sentence is both true and rational.18

11Of course, although it seems obvious that a good identity criterion for logical terms should be grounded on a theory
of meaning, neither it is obvious which kind of criterion is adequate, nor which kind of theory of meaning should be
applied. We could also doubt about the existence of a good criterion of identity or a good theory of meaning.

12[Carnap, 1937], first part, section 17.
13[Steinberger, 2016], for a defence of the coherence of this position.
14[Coffa, 1991], p. 309 for the analogy with geometry. [Restall, 2002] gives a clear picture of the kind of pluralism

that we can achieve following Carnap’s approach.
15For the distinction between internal and external validity, [Haack, 1978], pp. 14-15; for Carnap’s rejection of an

external notion of validity, just consider the Foreword of [Carnap, 1937] in which he disapproves the “striving after
‘correctness”’ of traditional logicians.

16Technically speaking, Carnap has a conventional theory of meaning, so its inclusion in this chapter is in some way
objectionable; nonetheless, his theory is so permissive that does not pose any restriction for formal systems and does
not give any identity criterion for logical terms.

17Indeed his famous rejection of analytic sentences in [Quine, 1951] does not apply to propositional logic (even though
he consider this topic when he presents his famous picture of the language as a web), and also his rejection of truth by
convention in [Quine, 1976b] is essentially devoted to refuting Carnap’s version of logicism.

18Of course, this is not a full characterization of this principle, but it is nonetheless enough detailed for our investigation
about translation between logical languages.
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Of course, both principles are fallible in general that is there are cases in which they lead to a bad
translation. A counterexample to the first is, for example, the world “gift”, which means present in
English but poison in German. And about the second, just imagine what would happen if we apply
it when we are translating a sentence of an old Babylonian book about the origin of the universe.
However both principles are very useful when we are trying a radical translation, that is a translation
of a new language we know nothing about. For this reason, these principles are very useful for
investigating the purely rational limits of translation, and in particular translations between logics.

According to Quine, even though the principle of homophony is commonly applied by philosophers
who deal with deviance in logic, we should follow the second principle. In this way, the existence of
deviant logics and deviant logicians would be just the outcome of a bad habit of translation, since
denying a logical law they fail to speak of the standard logical terms. His reason for this conclusion
is that logic is something so fundamental that every time we encounter someone that seems to reject
a logical law, we should search for another explanation, like a problem of translation.

It is interesting to notice that this consequence of the principle of charity does not need a theory
of meaning in order to work. So we still have a quidquid ea sunt approach to connectives (at least to
non-classical ones, as we will see), but nonetheless we can exclude the acceptability of homophonic
translation.

This reading of the phenomenon of deviance in logic is very controversial and seems at odds also
with other papers of the same philosopher. Indeed in his [Quine, 1951], he famously sustained that
logic is (at least in principle) revisable, and it is not so clear how this could be possible if logical
disagreement is impossible. This mismatch between the two views is particularly apparent in [Quine,
1986], where Quine argues that there can not be something like a disagreement about logic, and then
evaluates non-classical logical systems as if they were real rivals to classical logic.

I think that a good solution to this apparently irresolvable contradiction can be found in Quine’s
attempt to reconstruct truth tables for logical terms via radical interpretation.19 His idea is that
since classical logical terms are truth-functional, it should be possible to identify logical terms in an
unknown language if we manage to find a word for assertion and one for rejection. In this way, it
should be possible to identify a truth table for a logical term and the identification of a logical term
via radical translation would be identical to the recognition of the validity of the classical logical laws
for that term. For this reason, it would be impossible to reject a logical law without changing the
subject.20

Despite this theory of classical logical terms, I nonetheless believe that Quine should be included in
this chapter, since he does not give any theory of meaning for non-classical logical terms. His position
is probably the most idiosyncratic that we will encounter, since it considers a theory of meaning but
for a single logic: classical logic. For all the other systems the quidquid ea sunt approach is applied.21

Even though we will defend the “change of logic, change of subject” position, I believe that many
aspects of Quine’s approach are disputable. Indeed, also accepting his plan of reconstructing truth-
tables via radical translations, the gap between these and classical logic is bigger than it would seem,
since we still need a justification of bivalence. Without bivalence truth-tables can suit well intuitionistic
logic, as observed by McDowell22 and Read23, so we are still far from a good reason to select classical
logic as the one true logic. Also, his position regarding the possibility of reconstructing truth-tables
could entail monism regarding classical logic only if we accept his general pessimistic position about
meaning and translation, and our general inferentialist approach is already in contrast with it.

4.2.2 Reasons for identity

Even though the idea that apparently deviant logics speak about different connectives is the more
acceptable aspect of Quine’s picture, there are nonetheless reasons to believe that different logical
systems can speak about the same logical terms and that, for this reason, they can be genuinely
deviant. There is an argument for this conclusion, that starts with an old paper of Williamson and
arrives at recent articles written by Beall and Restall.24

The argument is based on the observation that some connectives, like classical and intuitionistic
negation, can not occur in the same language and be distinct. As far as I know, the first observation

19The clearest exposition of this idea is in [Quine, 1992], p. 44-47.
20Of course, this position has to be considered as a change of mind with respect to Quine’s earlier position about the

changeability of logic.
21We will see that a realist approach to logical disagreement differs from that of Quine because it attributes meaning

also to deviant systems, regardless of their validity!
22[McDowell, 1976]
23[Read, 1988], p. 23.
24Nonetheless, they apply this argument to reach essentially different conclusions. It seems that their position re-

garding deviance is their only trait d’union.
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about this property of the two negations is in [Popper, 1948], where Popper uses it to exclude the
interpretation of “ i . . .” as “it is impossible that. . .”. Popper’s reasoning is essentially this:

• “it is impossible that. . .” and “it is not the case that. . .” can coexist in natural language;

• the meaning of classical negation is “it is not the case that. . .”;

• if the meaning of intuitionistic negation were “it is impossible that. . .”, then we could have a
language (natural language, indeed) in which both it and classical negation occur as distinct
operators;

• but this is not possible, since if  i and  c occur in the same language, it is always possible to
derive  iφ %$  cφ for every sentence φ;

• so the meaning of intuitionistic negation is not “it is impossible that. . .”.

The penultimate point is a purely formal one, and it is nowadays widely known. It can be easily
shown by the following natural deduction derivations

 iA [A]
 iE

Ki
Efqi

Kc
 cI

 cA

 cA [A]
 cE

Kc
Efqc

Ki
 iI

 iA

and it trivially follows by uniqueness of intuitionistic negation.25

We have to distinguish between Ki and Kc because otherwise the identification between the two
negations would be caused by the unjustified identification between the two absurdities. Indeed we
know that minimal negation is not unique, so the two derivations could not work for two logical
constants, Km1

and Km2
, characterised by the rules for minimal negation. The reason for this is

essentially that ex falso quodlibet does not work for it.26

This observation is used to show the uniqueness of logical constants for the first time in [Williamson,
1988], while Restall uses it explicitly only in [Restall, 2014],27 but it is in the background of its and
Beall’s arguments against an identification between his pluralism and the kind of Carnappian pluralism
we already saw.28

Williamson considers the possibility that the disagreement between intuitionists and classicists is
purely verbal, that is that the classical logician is speaking about something (classical negation) and
the intuitionist logician is speaking about something completely different (intuitionistic negation). If
this were the case, it should be possible to have both terms in the same language, but as we just saw,
Popper told us that this is not possible.29 So the disagreement can not be purely verbal, at least for
classical and intuitionistic negations.30

Restall uses the same argument in one of his papers in order to defend his conception of logical
pluralism against Carnap’s one. The main difference between these two kinds of pluralism is that
according to Restall classical logicians and deviant logicians speak about the same logical terms, so
there is a real deviance and a real disagreement; while as we already saw, according to Carnap classical
logicians and deviant logicians speak different languages and as a consequence speak about different
logical terms, so there is no real disagreement (nor deviance, we could argue), at least as long as we do
not need to select a logic for an application. Since we can not have a language in which there are both
classical and intuitionistic negations, we should conclude that there is just one negation, differently
characterised by the different logics.

There are just two differences between Restall’s argument and Williamson’s one: Williamson speaks
about the impossibility to have classical and intuitionistic negations in the same language, while Restall
speaks about the impossibility to have them in the same (model-theoretic) frame; Williamson speaks

25[Belnap, 1962]
26[Milne, 1994], p. 66. Although we did not rely on it, it is nonetheless interesting to note that the version of Inversion

Principle formulated by Negri and von Plato ([Negri and von Plato, 2001]) and frequently identified with uniqueness
holds for minimal negation (this identification is for example supported in [Milne, 2015], p. 196). Indeed, even though
the rules for minimal negation are too weak to give uniqueness, they are enough strong to permit a derivation of direct

grounds for negation from a negated formula:
 mA A

 mE
Km

So we can conclude in passing that we have to

reject the identification between Negri-vonPlato Inversion Principle and uniqueness.
27In the sections “three negations in one logic?” and “or one negation in three logics?”
28His version of Williamson’s argument is essentially developed in [Restall, 2002], but it also occurs in other papers;

we will give precise references in the next section, in which we will deal with a realist approach to logical disagreement.
29Interestingly, Williamson ascribes this observation to [Belnap, 1962], and not to [Popper, 1948].
30Williamson then applies this result to other questions regarding predicate ascription and existence.
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only about classical and intuitionistic logic, while Restall speaks also about dual-intuitionistic logic.31

The first distinction is inessential, while the second is very interesting in my opinion.
I think that Restall’s version of this argument gives good grounds to doubt about its strength.

Indeed it contains the seeds of its rejection, since it argues for both identity of intuitionistic and
classical negation, and identity of dual-intuitionistic and classical negation. Now we have two options:
we can consider intuitionistic negation identical with dual-intuitionistic negation or we can consider
them different. Both options lead to unacceptable conclusions. Indeed:

• If they are different, then we lose transitivity of identity, since  c “  i and  c “  di but
 i ‰  di;

• If they are the same, then it should be impossible to have both of them in the same language.
But we have a logical system that contains both  i and  di, that is BI-intuitionistic logic, so
according to the same criterion proposed by Williamson and Restall they should be distinct
connectives.32

Also, we can prove that if  i and  di were the same negation, we could not have BI-intuitionistic
logic. Indeed if Γ $i ∆ or Γ $di ∆, then Γ $bi ∆, so, since we can prove that Γ $c ∆ iff there
is a classical formula A such that Γ $i Ar i{ cs and Ar di{ cs $di ∆, if  i and  di were
identical we should have Γ $bi ∆ by transitivity, and so classical logic and BI-intuitionistic
logic should be identical.33 In conclusion the identification between  i and  di not only is not
dictated by BI-intuitionistic logic, the same existence of this logic is in danger if we assume this
identity.

What is worse is that Restall’s extension of Williamson’s argument seems completely justified. Indeed,
it is true that we can not have classical and dual-intuitionistic negations in the same language, so this
problem regarding Restall’s position affects also Williamson’s one.

Someone could argue that the last point regarding BI-intuitionistic logic misses the target, since
both Williamson and Restall focus on the entailment “if they can not coexist in the same language
then they are the same” and not on the opposite entailment “if they can coexist in the same language
then they are not the same”.34 Nonetheless here we are not evaluating Williamson’s and Restall’s
positions per se, we are interested in the problem of identity of logical constants, and if they assert that
their criterion is applicable only in one direction, then they refuse to give an answer about identity
when their criterion is not satisfied, and so we can not help but consider this criterion as (at least)
incomplete.

In conclusion, the quidquid ea sunt approach can lead us to a generalized adoption of the principle
of charity, to a generalized adoption of the principle of homophony or to just mentioned coexistence
criterion. None of this choice seems to be fully satisfactory and, for this reason, we need to investigate
the inner structure of logical constants in order to find a more fruitful approach. That is we have to
deal with the characterization of logical terms.35

4.3 Realist theories of meaning

In a series of papers Beall and Restall argue for logical pluralism in a realist approach.36 Their argu-
ments for logical pluralism are quite complex and would deserve a deeper consideration. Nonetheless,
we are mostly interested in antirealism in this thesis, so we will deal with their project only briefly.
First of all, we will consider their argument for the existence of genuine rivalry between logics, then
we will focus on pluralism.

31“There is no frame in which all three negations coexist as propositional operators on the same class of propositions,
giving the distinct classical, intuitionist and dual-intuitionist properties.” [Restall, 2014], p. 287. A classical reference
for this logic is [Urbas, 1996].

32[Rauszer, 1974].
33The proof of this result is given in Appendix B.3.
34Williamson, smartly enough, asserts only that if they can not coexist distinct in the same language, there can not be

just a purely verbal disagreement about them. Nonetheless, I believe that this conclusion rests on the identity problem
we focused on.

35There is another argument for the identity of logical terms that could be collected in this section: proponents of
deviant logics usually assert that they are not postulating new meanings for connectives, but new theories for the old
connectives ([Williamson, 2014], p. 225). Nonetheless, I do not think that the intents of people are so influential in this
kind of debate.

36[Beall and Restall, 2000], [Beall and Restall, 2001], [Beall and Restall, 2006].

90



4.3.1 Logical disagreement

Beall and Restall give essentially a modified version of Williamson’s argument. I think that in this
way the argument works far better, although at the cost of relying on a realist conception of the
meaning.

First of all, the authors define logical validity following essentially Tarskian tradition:

Definition 4.3.1 (Generalised Tarski Thesis (GTT)). An argument is validx if and only if, in every
casex in which the premises are true, so is the conclusion.

So validity is defined as truth preservation over a set of models, but different sets of models give
different notions of logical consequences. The authors prefer the term “case” to “model” in order to
specify that they do not want just formal structures, but objects with a philosophical dignity. It is
natural to interpret their reading of (GTT) as tied to some kind of correspondence theory of truth,
following the same interpretation given to Tarskian semantics by Davidson.37

What is new about (GTT) is the idea of proposing this conception of logical consequence without
a selection of just one class of cases over which truth should be preserved. In this way, we can define
different relations of logical consequences, and if we find good reasons to assert that there are at least
two sets of cases that correctly define a notion of logical consequence, then we can conclude that there
are at least two correct logics.

We need to be very clear about this point: even if we manage to find two (philosophically and
formally) acceptable sets of cases that define two relations of logical consequence, this does not entail
that we should be pluralist. We just have a realist philosophical interpretation of two logics. We still
have to argue that they can coexist and that there are no reasons to impose a selection between them.

About the possibility of coexistence, we will see that according to Beall and Restall this is grounded
on the fact that they speak of the same logical terms. So in some way, Beall and Restall obtain the
real disagreement between deviant logics and, at the same time, the availability of pluralism. This is
a peculiar aspect of their kind of pluralism.

Let us consider classical, intuitionistic and relevance (FDE) logics. The authors detect these
systems from the following sets of cases:

• Worlds or Tarskian models for classical logic: that is cases that are both consistent and complete;

• Constructions for intuitionistic logic: cases that are consistent but possibly incomplete;

• Situations for relevance logic: cases that are possibly inconsistent and incomplete.

Essentially, starting from possible worlds or Tarskian models, we obtain constructions from the
phases of a process of discovery carried out in that world or from the phases of a process of proof
regarding that model. For this reason, we can have incomplete constructions. This is essentially the
idea behind Kripke’s models for intuitionistic logic, and gives us our first result important for the
relation between logics:

Observation 4.3.1 (Classical and intuitionistic cases). Every classical case is also a case for intu-
itionistic logic, that is every Tarskian model and possible world is a special kind of construction, but
the converse does not hold.

The authors are enough smart not to explain in detail what they mean with incompleteness. Indeed
an intuitive way in which a case could be incomplete is by accepting gaps in truth values, especially
if we consider the realist flavour of this approach. Nonetheless, it is well known that intuitionistic
logic can not be characterised using gaps in truth values. Indeed even though A _  A is not an
intuitionistic law,  pA _  Aq leads to contradiction and   pA _  Aq is an intuitionistic logical
law. So it is intuitionistically contradictory to assert that there are gaps in truth values; the kind of
incompleteness that we need in this case is subtler.

In order to obtain the cases for relevance logic, we need two steps. First of all, we consider
situations as parts of possible worlds, that is, incomplete reports of what is going on in a possible
world: this gives us consistent situations. We could think that consistent situations and constructions
are essentially the same thing, but this is not the case. Indeed constructions are built according to
precise rules, while the definition of consistent situations is freer. Also, the way in which the logical
constants are interpreted in the two sets of cases is very different. Our second step is the inclusion of
inconsistent situations, that are situations in which some incompatible events happen. For example,

37[Davidson, 1969]
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a situation which the same box is absolutely empty and contain a figurine in it.38 So inconsistent
situations can be used to describe “ways that things could not be”.39

Now we can assert our second result:

Observation 4.3.2 (Classical and relevance cases). Every classical case is also a case for relevance
logic, that is every Tarskian model and possible world is a special kind of situation, but the converse
does not hold.

Although in this case gaps and gluts in truth values are enough to obtain our logic40 and so there
is a characterization of both incompleteness and inconsistency of situations that is unquestionably in
agreement with our realist disposition, Beall and Restall are strangely silent about this interpretation.

Using our two observations, we can argue that the three logics speak about the same logical
terms. First of all, let us observe that the set of classical cases is the intersection of the three sets of
cases that detect the logics, that is, classical cases are also (degenerate) situations and (degenerate)
constructions. If we look at the properties of the cases that define the logics this property is almost
obvious. So we can ask how the supposed different negations behave in a classical case.

Let us consider the negation, as an example. Its behaviour is characterised in the three logics by
the following clauses:

classical logic given w possible world w ,  A iff w . A;41

intuitionistic logic given c construction c ,  A iff for every successive step of construction c1,
c1 . A;

relevance logic given s situation s ,  A iff for every situation s1 compatible with s, s1 . A.

Without considering the details, it should not be too controversial that a possible world is a situation
that is compatible only with himself, and a construction that does not have any further steps. If
we grant this, when we evaluate a negation in a classical case we find out that all three clauses
are equivalent, that is in a classical case an intuitionistic or relevant negation behave as a classical
negation. The same conclusion can be found about all the other connectives.

Beall and Restall argue that this is evidence that all three logics speak about the same connectives,
and that the differences in behaviour are due to differences in the properties of the cases. Indeed
when these external differences are absent, the same clause works fine for all three logics. So classical,
intuitionistic and relevance logics do not speak of different connectives, but just of different sets of
cases.

A consequence of this observation is that we can not have a severed classical negation in a frame-
work for intuitionistic logic or in a framework for relevant logic. A moment of reflection gives also the
opposite entailment. For this reason, I consider this argument a more refined version of Williamson’s
early argument for the same conclusion.

Criticisms

The general criticism is that the model-theoretic approach is not apt to define some logics: as an
example, it is not possible to define logics that are not transitive or reflexive. Of course, also for some
logics that are technically definable in this way there is nonetheless the problem of the philosophical
acceptability of this definition. [Read, 2006], as an example, criticizes Beall and Restall’s definition
of relevance logic using model-theoretic semantics because it essentially relies on classical metatheory.
Of course, the criticism of this habit of using different logics on the metalanguage and on the object
language is shared also by Timothy Williamson.42

Shapiro agrees on these objections to the model-theoretic approach to pluralism and argues that
for intuitionistic logic the problem is also deeper. Indeed we can not model the intuitive idea of the
gradual construction of natural numbers using Kripke semantics.43 This problem does not hold only
for intuitionism, but for every kind of constructivist account of arithmetic.

38[Priest, 1997]
39This description is not in contradiction with dialetheism. Indeed this doctrine accepts a distinction between possible

and impossible worlds, but suspends the judgment about whether the actual world is possible or impossible; see the
conclusion of [Priest, 1997].

40[Priest, 2008], p. 146.
41The clause for Tarskian model is similar.
42[Williamson, 2014].
43[Shapiro, 2014] chapter 2 section 3.
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4.3.2 Logical pluralism

Beall and Restall obtain logical pluralism from (GTT) arguing that we are not committed to select
just one set of cases for the definition of a valid logic. Also, the fact that different logics speak about
the same logical terms but in different cases makes them disagree without the possibility to have only
one right logic. Indeed Steinberger has proposed the label “structural meaning-variance” for this kind
of pluralism, where ‘valid’ has different meanings but the logical conncetives have the same meaning
in all the acceptable systems.44

Criticisms

Is it a real pluralism? The fact that intuitionistic and relevant structures have as special cases classical
structures is not a new discovery. Intuitionists for example usually assert that there is nothing bad
with the application of classical logic in some special contexts (for example when we deal with finite
domains or decidable predicates). For this reason, Priest is sceptical about the advantages of using a
pluralist approach instead of a monist one in which extra pieces of information about specific contexts
are used.45

Priest poses two other problems for pluralism, related to this. Let us consider the two logics S∞
and S∈, such that S∞ is a sub-logic of S∈. If and S∈ can be justified using (GTT), then it preserves
truth, and so we are always entitled to use it to justify a conclusion. So logics are not equal: the true
logic is the strongest logic that preserves truth. From another perspective, it seems that is we take
(GTT) seriously enough, we should consider valid only the logic that preserves validity over all the
cases. In this way, the true logic is the weakest logic that preserves truth.46

Stephen Read points out that for logics that are not sub-logics of classical logic we have also more
dangerous consequences. As an example, while for classical logic  A,B (c  pppA Ą Bq Ą Bq Ą Aq,
for Abelian logic  A,B (a ppA Ą Bq Ą Bq Ą A. This situation raises the worry: we should be
entitled to assert ppA Ą Bq Ą Bq Ą A, its negation or both of them? 47 Beall and Restall could object
that it is not obvious how to define Abelian logic following (GTT), but Read rejects this hypothesized
objection, arguing that it is always possible to find a “possible world semantics” for this kind of logic.
I suspect that Read’s formal observation does not satisfy the philosophical requirements imposed for
cases by Beall and Restall. Indeed they are very clear at least about their intention to distinguish
between cases and formal models.

Gillian Russell points out that the “collapse arguments” for logical pluralism could also give ground
for endorsing logical nihilism, the thesis that there is no valid logic. To be precise, she started arguing
for nihilism without taking into account any precise definition of validity. Essentially she assumes
that truth-preservation is at least necessary for validity and proposes a way to find a counterexample
for every alleged logical consequence, but without a clear theory of meaning for logical terms. So she
argues for this bad consequence of the “collapse arguments” in a Quidquid ea sunt approach to logical
constants.48

Someone could think that this is another bad consequence of (GTT), but I do not think so. Indeed
the kinds of counterexamples given by Russell for some seemingly obvious logical consequences seem
to be in friction with a realist approach to logical consequence. Let us consider her most significant
examples:

• In order to reject A,B ( A ^ B she proposes the atomic sentence ‘SOLO’, that is always true
when it does not occur as a subsentence and always false otherwise. In this way we can have two
true premises for A,B ( A^ B, if A is substituted with SOLO and B with any true sentence,
but a false conclusion.

• In order to reject A ( A she proposes the atomic sentence ‘PREM’, that is always true when it
occurs as a premise and always false otherwise.

It seems evident that these counterexamples are at odd with a realist interpretation of logical conse-
quence in which sentences should be about worlds, situations, or related entities. Indeed the author
recognises this way out in a later paper, even though she points out that this is not a zero-cost solution,
metaphysically speaking.49

44 [Steinberger, 2019], p. 8. Although Hjortland raised some doubts about the possibility that a variation in the
meaning of ‘valid’ does not entail a variation in the meaning of the logical constant in Beall and Restall’s approach: see
section 5 of [Hjortland, 2012].

45[Priest, 2001]
46These two arguments are standardly called “collapse arguments”, for obvious reasons, in the literature.
47[Read, 2006], p. 197.
48[Russell, 2018].
49[Russell, 2019].
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4.4 Antirealist theories of meaning

In this thesis, we developed an antirealistic theory of meaning for logical terms and we reconstructed
different logical systems inside this framework. We started imposing some restrictions on the ac-
ceptable systems and considering some desiderata, like autonomy and innocence of logic, and (weak)
separability of meaning. We then saw a special kind of inferentialist theory of meaning, that is proof-
theoretic semantics, that imposes extra requirements for logical systems to be acceptable. In the
second chapter, we proposed liberalization of traditional proof-theoretic semantics, by pushing to its
extreme limits a reasoning proposed by Dummett to reject multiple-conclusion logic and integrating
this conclusion with an observation made by Milne. With this machinery, we were able to propose a
single-assumption and single-conclusion formulation of three different logical systems:

SASCJDJ: a system that suits both the restrictions for intuitionistic logic and dual-intuitionistic
logic;

SASCJ: an intuitionistic system;

SASCK: a classical system.

Now we want to evaluate the possibility to explain logical disagreement and to adopt pluralism in
inferentialism, in general, and in our theory of meaning, in particular.

First of all, let us just observe the special status of quasi-deviance in this framework. We defined
quasi-deviance as a situation in which two logics are not expressed in the same language, but none
of them is a conservative extension of the other one. This situation is problematic for our kind of
inferentialism because we want an analytic justification of logical consequences and an inferentialist
notion of meaning, and quasi-deviance can be at odds with the combination of these two principles.
Indeed when a theory is extended with some rules for a new connective that have repercussions on
the meaning of the terms used in the starting system (a kind of quasi-deviance) there seems to be a
chaotic relation between the meaning of logical terms, and separability is in particular danger.

Sometimes it is possible to save the situation, by finding other sets of rules that suit separability
of meaning. Indeed this is what we did with full classical logic, that in traditional proof-theoretic
semantics is a quasi-deviance of negation-free intuitionistic logic, due to differences in the purely
implicational fragment of the two logics that are nonetheless formulated using the same pair of rules
for implication. We saved the acceptability of classical logic by showing a complete system for negation-
free classical logic that suits weak separability. In this way we have deviance between classical and
intuitionistic negation-free fragments and the complete systems are conservative extensions of their
sub-theories. In order to save this good result, we have to reject identity between connectives of
different logical systems, at least when they do not agree on valid consequences. That is classical
implication and intuitionistic implication can neither be the same, nor have the same meaning, if we
want both the analytic status of logical consequences and separability of meaning. In brief, in addition
to the standard reasons to accept meaning variance in inferentialism, we also have reasons base on
separability issues.

There is a proposal to circumvent this and related arguments by adopting a distinction between
two kinds of meaning: an operational one, given by the rules that govern the constant in isolation, and
a global one, given by those rules together with structural rules.50 As far as this thesis is concerned,
we can not endorse this answer, since we reject a strong distinction between multiple assumption
and assumption of a conjunction and between multiple conclusion and conclusion of a disjunction.
So, according to our analysis, a structural difference between two logics is just a logical difference in
disguise. Indeed the differences between our SASC-systems are essentially grounded on differences
in the way in which logical terms interact with conjunction and disjunction. Nonetheless, this does
not lead to a distinction between two different kinds of meanings in this perspective.

Another similar proposal uses restrictions on the number of formulas in the assumption and in the
conclusion in order to reconstruct different notions of logical consequence inside the same system.51 Of
course, the observation that this kind of restriction can be used to detect interesting sub-logics is not
new; what is new is the proposal to use this fact to have multiple notions of validity inside one system.
The argument is essentially the following: since there is no variation in the rules there is no variation
in the meaning of the logical terms. In this way, we can have a plurality of notions of consequence that
does not entail a variance in the meaning of logical terms.52 Hjortland also proposes a generalization

50[Paoli, 2003].
51This is the main proposal of Restall in his [Restall, 2014].
52Even Hjortland, which is usually sceptical about the possibility to have a variance in the meaning of “validity” that

does not entail a variance in the meaning of the logical constants (see note 44), is sympathetic with this conclusion, in
this case: [Hjortland, 2012], pp. 11-12.
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of this argument, based on n-sided sequent calculus.53 Unfortunately, also this option relies on a
notion of multiplicity that does not depend on conjunction or disjunction, so it is not acceptable in
our perspective. Moreover, it also has some independent flaws, since it relies on sequent calculus,
which has a much more controversial philosophical status than natural deduction. The individuation
of different notions of “validity” should be justified philosophically (or at least meaning-theoretically)
as well. From this point of view, Restall proposes a bilateral reading of sequents as preventing the
assertion of the antecedents and the rejection of the succedent.54 I am not completely sure of how to use
this interpretation of sequents to accept the presence of more logical consequences inside one system,
but at least he proposes an antirealistic interpretation of what logical consequence is. Unfortunately,
this reading has to be abandoned if we want to accept Hjortland’s proposed generalization, since
Restall’s bilateral approach to meaning can not justify an n-sided version of sequent calculus.55

In this work we essentially developed a version of Restall’s proposal in which multiplicity of for-
mulae is interpreted as conjunction or disjunction of formulae, exploiting Milne’s interpretation of the
restriction and liberalisation on the number of formulae in antecedent and succedent of sequents.56

What we found is a pluralistic justification of three different logics that can rely on a well-established
meaning-theoretical interpretation of natural deduction. The main difference between Restall’s pro-
posal based on sequent calculus and our proposal based on natural deduction is that in our perspective
the logical terms of different logical systems can not be the same or have the same meaning.

It is usually believed that in this kind of framework in which differences in the set of theorems
entail differences in meaning it is not possible to account for logical disagreement. As a consequence,
it seems that the only philosophical position that can spring out from this framework is a kind of
irenic pluralism devoid of real philosophical significance. We will reject both conclusions.

4.4.1 Disagreement

There are two kinds of disagreement about logic that we can find in an antirealistic perspective:

• A disagreement between two different theories of meaning: as an example a disagreement be-
tween Prawitz’s original theory of meaning that justifies intuitionistic logic but rejects classical
logic, adopting a multiple-assumption, multiple-conclusion approach57 and our revised theory
that justifies classical logic, adopting neither multiple assumptions nor multiple conclusions;

• A disagreement between two logics inside a single theory of meaning: as an example, we justify
both classical and intuitionistic logic within our theory of meaning, but these two logics seem
to disagree about the validity of some logical consequence.

The first kind of disagreement is just a theoretical disagreement about what is meaning, what is
a good theory of multiple assertions, etc. We do not have any reason to deny that there can be a
genuine disagreement between proponents of different theories of meaning, like we do not have any
reason to deny that there can be a genuine disagreement between proponents of different theories of
electrons, planets, etc.

Nonetheless, the second kind of disagreement is more problematic because, as we already saw,
different logical systems speak about different logical terms when they justify different consequences.
That is, when there seems to be disagreement, there is just “change of subject”. Indeed every objection
to meaning change that we considered in the previous sections has to be abandoned in our new
approach, as we just discussed. Then our next question can only be: can we explain the apparent
disagreement between logics, by using disagreement between theories of meaning? I think that there
are good reasons to believe that we can, at least in most cases. Indeed a lot of traditional rivalry
between logics can be understood as rivalry between which form a true theory of meaning should
have: the disagreement between classical logic and intuitionistic logic corresponds to disagreements
about multiple conclusions, identification of denial with negation, weak or strong separability, etc;
the disagreement between classical and substructural logic corresponds to the disagreement about the
substructural properties of logic.58 Of course, this can not be a good solution for realistic-borne logics,
like trivalent logics. Nonetheless, this is not surprising for an antirealistic reconstruction of the debate,
and maybe we should wait until we have a good antirealistic reading of these logics to evaluate the
possibility of explaining logical disagreement in their respect.

53[Hjortland, 2012], p. 14.
54[Restall, 2005].
55Indeed Hjortland obtains his system by a reflection on multiple-valued logics [Hjortland, 2012], p. 13.
56See chapter 2.
57At most, since the problems with ex falso quodlibet that we discussed in section 1.2.3 of chapter 1.
58[Restall, 2000]
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A consequence of this reformulation of logical disagreement is that when a theory of meaning
justifies more than one logic (as happens in our case), there can not be a real disagreement between
them, but just a kind of pragmatic rivalry. Two logics can both be justified and a consequence can
hold according to the first and do not hold according to the second. In this case, if the theory of
meaning is right, the consequence is valid if formulated with the connectives of the first logic and
invalid if formulated with the homonymous connectives of the second logic.

Apart from disagreements about the theory of meaning, the only disagreements possible are about
which one of the various logics should be used for a given task. As an example, given our theory
of meaning, tertium non datur is valid if formulated using the connectives of SASCK but invalid if
formulated using the connectives of SASCJ. Nonetheless, the question of which connectives are more
useful as tools for the construction of some kind of theory remains open. Indeed, while SASCK is
stronger, so it seems to be preferable, some mathematical theories that are coherent if formulated using
SASCJ are provably incoherent if formulated using classical logic.59 Let me stress for clarity that the
most useful logic for a given purpose is not in any way the most rigorous or the most valid one: we
take into account only systems that are justified by our theory of meaning. In summary, we can have
a theoretical disagreement about the acceptability of a theory of meaning that has as a consequence a
disagreement about the justification of a logic, and we can have a pragmatical disagreement about the
convenience of the usage of a (justified) logical system in place of another (justified) logical system.

This approach to the issue of logical disagreement is not entirely new. Dummett distinguishes
between two different kinds of apparent logical disagreement: conceptually deep and conceptually
trivial.60 Quine’s doctrine of change of subject is endorsed in general, so two logics that apparently
disagree with each other, are really just speaking of different connectives. Nonetheless, an apparent
disagreement about the properties of a logical constant can hide a real disagreement about which
theory of meaning we should endorse. According to Dummett, this disagreement is conceptually
trivial when:

GoodMeaning both parties in the dispute accept that both meanings are well characterised and
acceptable, that is they just verbally disagree about the respective label that they use;

Coexistence using different labels we can have two logical constants in the same language that
correspond to the two meanings attached by the speakers to the same constant.

Dummett seems to treat these two conditions as equivalent, and so characterises a disagreement as
conceptually deep when:

((((((((hhhhhhhhGoodMeaning at least one of the parties in the dispute rejects that both meanings are well charac-
terised and acceptable.

I will argue that GoodMeaning and Coexistence should not be considered equivalent in general.
Then I will consider a recent interpretation of Dummett’s idea offered by Prawitz’s and argue that it
is in some way misleading. In conclusion, I will explain what we can say from our perspective about
Dummett’s position.

Let us start with GoodMeaning and Coexistence by considering intuitionistic and dual-intuitionistic
negations ( i and  di). We already saw that the issue of the identity of these prima facie distinct
negations is a very controversial one. Of course, they can coexist as distinct connectives in the same
formal system, as shown by BI-intuitionistic logic, so they suit Coexistence and the disagreement
between an intuitionist and a dual-intuitionist should be trivial. Nonetheless, it is surely possible to
characterise it as a deep disagreement between two different approaches to meaning: verificationism
and falsificationism.61 As a consequence, two speakers can be sceptical about whether the other’s
point of view about meaning is acceptable or not. The mere existence of a formal system that con-
tains both connectives is not enough to settle the issue of whether meaning should be defined via
verification or via falsification. Nor it is enough to establish that these two approaches to meaning
can go together, since they could be incompatible for purely philosophical and non-technical reasons.
So the two speakers can still fail to satisfy GoodMeaning and be in conceptually deep disagreement.

We can have the opposite situation as well, that is to say, we can have an apparent disagreement
that is obviously conceptually trivial but such that it cannot be solved by showing a system that con-
tains two connectives, one for each meaning. Let us consider the following situation: Alice asserts p_q
and Bob rejects this assertion.62 Let us assume also that p and q are sentences regarding momentum

59[Shapiro, 2014] explains very well how pragmatical reasons could lead one to chose one or another logic, and not
necessarily the strongest one, as commonly believed. His examples regarding classical and intuitionistic logic can be
adapted to this case since SASCK is classical while SASCJ is intuitionistic.

60[Dummett, 1991], p. 193.
61We already saw the connection between intuitionism and verification. For the connection between dual-intuitionism

and falsification, see [Shramko, 2005].
62That is to say, he refuses to assert it. I leave open the issue of his acceptance of  pp_ qq.
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and position of a subatomic particle, and that Bob is interpreting _ as a quantum disjunction while
Alice is interpreting it as a plain and simple classical disjunction. Both Alice and Bob could agree that
quantum logic is just a formal system of derivation, practically useful but conceptually pointless, and
that it should not be considered as a good proposal for a revision of our logical practice. In this case,
if they find out that they are applying different connectives, they could agree that their disagreement
is purely trivial: there is no real disagreement about the correct theory of meaning, since Bob is just
using _ in a technical way, without suggesting any revision of Alice’s linguistic practice, which he
endorses too.63 Nevertheless, since classical and quantum disjunctions cannot coexist in the same
system, we should consider this as a case of real disagreement, according to Dummett. So it seems
that the possibility of coexistence in the same system is not a good criterion of real disagreement,
after all.

In his [Prawitz, 2015a] the author applies Dummett’s distinction to conclude that it is possible
to correct the apparent rivalry between classical and intuitionistic logics.64 Indeed, as we saw in
section 2.5, he proposes an ecumenical system in which both classical and intuitionistic logics hold.
In particular, it is possible to have both classical and intuitionistic disjunction and implication in the
same language. So Coexistence holds for both these connectives and there seems to be only a trivial
disagreement between a logician that endorses classical logic and a logician that endorses intuitionistic
logic, at least about the validity of sentences like ppA Ą Bq Ą Bq Ą B and pA Ą Bq_pB Ą Aq. If they
adopt an ecumenical language, then their disagreement disappear: they agree that both sentences are
valid laws if they are constructed with classical connectives and they are not if they are constructed
with intuitionistic connectives.65

The situation with negation is a little different, but similar. The validity of a single inference of
double negation elimination does not depend on the kind of negation that is applied, since Prawitz’s
ecumenical system contains only one negation, but depends on which logical terms are used in the
sentences that occur in this particular instance: if only classical terms are used, then it holds, otherwise
it does not. So, in the end, the classical logician has to withdraw his assertion that double negation
elimination holds in general, and what he has to admit about Peirce’s and Dummett’s laws is only
barely less detrimental.

There seems to be one main difference between Dummett’s original idea and Prawitz’s adapta-
tion: Dummett speaks of logical terms that coexist in the same language with universal applicability,
while Prawitz accepts logical terms with a restricted range of applicability. As we saw, in Prawitz’s
ecumenical system Modus Ponens does not hold in general for classical implication. So we have only
two options:

• We can recognise that this rule is not valid for classical conditional;

• We can restrict the field of applicability of classical conditional, by changing the definition of
well-formed formula, so that the counterexamples to Modus Ponens become ill-formed.

I think that none of these alternatives can be accepted without pain.
There is a similar, related issue: if we accept logical laws that do not hold for the entire language,

we should accept logical laws that hold in a subsystem of a system as well. That is, if we can
find a translation of a stronger logic inside a weaker one that we regard as correct, then we should
acknowledge that both logics are correct. Indeed what we can at most lose is the universal applicability
of the logical rules. In this case, Prawitz’s proposal is just a reappraisal of the standard observation
that there is a translation of classical logic inside intuitionistic logic, since in his ecumenical system
the purely classical connectives can be defined in the following way:66

• $ pA_c Bq ĂĄi  p A^ Bq

• $ pA Ąc Bq ĂĄi  pA^ Bq

• $ pDcxAq ĂĄi  p@x Aq
67

This does not speak directly against Prawitz’s ecumenical system. On the contrary, it could help
to give a meaning-theoretical interpretation of these translations analysed at the beginning of this
chapter. Anyway, this issue makes controversial Prawitz’s entire project of an ecumenical system.

63A similar situation could arise when Alice is using a classical connective, Bob is using a substructural connective
and they are speaking of pieces of information or resources.

64[Prawitz, 2015a], p. 17.
65[Prawitz, 2015a], p. 30.
66Remember that in Prawitz’s system, deduction theorem holds for intuitionistic conditional.
67[Pimentel et al., 2019a], p. 9.
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About Dummett’s position in general, we already argued that the impossibility of coexistence is
not a good criterion to detect a real disagreement between logicians. We still need to investigate what
is the difference between our kind of pluralism – that is a pluralist adoption of different systems with
distinct connectives – and Prawitz’s proposal of an ecumenical system – that contain more than one
logic in one single system. We will speak of this and of pluralism in general in the next section.

4.4.2 Pluralism

The pluralism that arises from our considerations can not be a purely Carnapian one, in which
every useful formal system is justified. In the first two chapters of this writing, we imposed some
restrictions on the shape that a good theory of meaning should have, in order for logical consequences
to be analytically valid. Even though we can give a good theory of meaning for more than one logic,
we impose some criteria on the acceptability of logical systems. Indeed we argued that both multiple-
valued and substructural logics are at least problematic to justify in our perspective. Moreover, logics
are not all on the same level: if one of the main heredity of Dummett is the observation that68

“Inconsistency r. . .s though the worst, is not the only possible defect of a linguistic prac-
tice.”

what we propose here is that different logics can be more or less defective, depending on how strongly
they are separable. Indeed, while harmony and weak separability are required for a logic to be valid,
we can not ask for strong separability in general. As a conclusion, we can order acceptable systems
depending on their degree of separability. That is, even though there can be good reasons to prefer
a system that is weakly separable over another one that is strongly separable, separability is surely a
virtue and its lack is a flaw.

At this stage of our investigation, we are considering only acceptable systems and valid conse-
quences. What is at issue is only pragmatics. Remembering this, we can explain what is the differ-
ence between the kind of systems we constructed and the ecumenical systems proposed by Prawitz.69

What at most is controversial in Prawitz’s system is the logical status of its classical component.
Indeed we saw that classical laws are not generally valid and some rules that seem to hold for classical
connectives are not even admissible in his system. Moreover, logical consequence in Prawitz’s system
has an innate intuitionitic character, since deduction theorem holds only for Ąi. Nonetheless the
acceptability of Prawitz’s system from the meaning-theoretical point of view is beyond doubt: Ąc

maybe is not classical implication, but its meaning is defined without circularity and it gives ground
to analytic consequences. So the only relevant differences between our systems and Prawitz’s one can
be pragmatical. Far from being grounded on a deep difference between two theories of meaning or
between two different approaches to logical disagreement, they are just different systems that can be
justified in our inferentialist framework. The pragmatical reasons that can lead someone to endorse an
ecumenical system in which some rules lose their universal applicability are beyond the scope of this
work. Surely this flaws is counterbalanced by other good properties of the ecumenical systems. Any-
way, what is central to our philosophical point is that both systems have the same attitude towards
the identity of logical terms: different rules give different connectives.

Cesare Cozzo proposed a fallibilist and pluralist version of proof-theoretic semantics, which shares
some issues with my view. He considers pragmatical and holistic criteria relevant for the choice of
the logical system70 and, since the relevance of these pragmatical criteria varies according to the
context, he consider a pluralistic approach to logic too.71 All these issues are common to both our
proposals, so there might seem to be a big overlap between our positions. Nonetheless, there are some
fundamental differences. According to Cozzo, pragmatical considerations already have a role in the
justification of logic, while in our version of proof-theoretic semantics there are two distinct moments
of evaluation: the first, in which purely meaning-theoretical considerations are applied in order to
justify logical truths as analytic; the second, in which valid logical systems are evaluated according to
their usefulness and pragmatical utility.

In Cozzo’s opinion, in order to construct a fallibilist theory of meaning, we need to reject ana-
lyticity of logic (and analytic truths in general).72 As a consequence, he rejects both the thesis that
meaning-conferring rules are self-justified, and the thesis that there is a structural, meaning-theoretical

68[Dummett, 1991], p. 215.
69[Prawitz, 2015a].
70And in general for the choice of a well-behaved language: [Cozzo, 2008b] pp. 313-4, [Cozzo, 2008a], p. 271, [Cozzo,

2019], section 6.
71[Cozzo, 1994a], pp. 259-262.
72[Cozzo, 1994a], p. 260, [Cozzo, 2008b], pp. 313-314 and [Cozzo, 2002], pp. 42-43.
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justification of non-meaning-conferring rules, that is harmony.73 The distinction between meaning-
conferring rules and non-meaning-conferring rules is not rejected, but it is considered relevant only
for a theory of understanding, not for a theory of justification of the language: naively, I understand
the meaning of a term if I know – but possibly I do not endorse – its meaning-conferring rules. Jus-
tification is dealt with from a holistic standpoint, meaning-conferring rules staying on the same level
of the other rules. Justification comes after understanding.74

I think that Cozzo’s position regarding analyticity rests on a subtle mistake. He assumes that
analytic truths cannot be rationally revised.75 However, this depends greatly on how revision is
defined. In our reformulation of proof-theoretic semantics, while it is certainly true that logical laws
are analytically valid, and so cannot be rejected tout court remaining in the same language, nothing
prevents us from changing language. Indeed the choice of language is based on purely pragmatical
reasons. As an example, there is no possibility of rejecting A_c  cA in its own language, but we can
‘reject’ the phonemically identical sentence A _i  iA, and refuse to apply classical logic for purely
pragmatical reasons. Regardless of whether this situation really stands for a revision of analytic
truths, I believe that it suffices for explaining why we sometimes do not want to adopt a well-behaved
language (and as a corollary its analytic sentences). In other words, it explains perfectly well how we
can use language to “impose an order on reality as it is presented to us”.76

To make a parallelism with theory change, let us consider the redefinition of momentum adopted
in special relativity. The old, Newtonian definition is:

~q “def m~v (4.1)

Einstein’s proposed revision is:

~q “def m~v
1

b

1´ v2

c2

(4.2)

Technically speaking, since these laws are definitional, they should be considered analytically valid.
Indeed the meaning of ~q (that is, the momentum of a body) is defined by the formula on the right.

Nonetheless, there are good reasons to reject the first definition and choose the second. It is a
result of Newtonian physics that the momentum of a closed system never changes, in other words it
is conserved.77 Unfortunately, this conservation is in contradiction with some postulates of special
relativity, specifically with its assumption that the speed of light is independent of the motion of the
source and of the observer. In order for momentum to be conserved, we need to adopt Einstein’s
redefinition of this notion.

Since conservation of momentum is so useful in physics to be a key property of this entity, it is
fully rational to choose to change the definition according to Einstein’s proposal. Putnam suggests
that in this kind of cases what happens is that a definitional property, that should hold analytically,
is rejected. As a consequence, this definition is only apparently analytical. To describe the status of
this kind of sentences he says that they are “as analytic as any nonanalytic statements ever get”.78

Indeed they cannot be refuted only by experiments: we need a new theory that proposes an alternative
definition or characterization.79 He shares the opinion of Cozzo that as a consequence we cannot speak
of a real analytic sentence for the Newtonian definition of momentum.80 I propose a different analysis
of the phenomenon. We have essentially two entities:

• The Newtonian momentum ~qN , that is not always conserved;

• The Einsteinian momentum ~qE , that is always conserved.

The formula 4.1 is analytically true of ~qN and the formula 4.2 is analytically true of ~qE . Since we
want conservation property to hold of our notion of momentum, it is pragmatically more profitable
to adopt the ~qE . This is all we need in order to explain the transition from the old definition to the

73[Cozzo, 2002], pp. 40-43.
74[Cozzo, 2008b], p. 315.
75[Cozzo, 2008a], p. 269, [Cozzo, 2002], p. 43.
76[Dummett, 1978b], p. 308. Cozzo argues that neither a conventionalist approach to logic, nor an approach that

identifies understanding and justifying can carry out this task, since the choice of language is arbitrary in the first case
and unrelated to the scientific enterprise in the second case. I hope I have explained why our approach (that is a mix
between these two) can instead solve this problem.

77This property can be derived from Newton’s law: ~F “ m~a.
78[Putnam, 1962], p. 374.
79Putnam characterises the principles of Euclidean geometry in the same way: [Putnam, 1962], pp. 372-374.
80To be precise, he speaks of velocity and kinetic energy, but the situation is completely alike; [Putnam, 1962],

pp. 368-381.
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new definition of momentum, we need neither to reject analyticity, nor to consider conservation of
momentum as an analytic truth.

I argue that this is the same situation in which we are when we assert that excluded middle holds
for  c but not for  i. We do not need to reject the thesis that this law is analytic for  c, we just need
to integrate this observation with some pragmatical considerations about the choice of the negation.
So, in conclusion, analytic truths can be rationally “revised”.81

Since analytic sentences are revisable in our theory, someone could wonder what is the difference
between analytic and synthetic sentences. It seems to me that while synthetic sentences can be revised
without changing the meaning of the terms that occur in it, analytic sentences can be revised only
changing the meaning of these terms. I argue that, since logical laws are always analytically valid,
they can never be revised without changing language.82 Dummett proposes this kind of approach to
take seriously the dynamic aspects of language – every sentence can be rejected – without rejecting its
static properties – the distinction between analytic and synthetic sentences –, and to pacify Quine’s
rejection of analyticity with his “change of logic, change of subject” thesis.83

“Quine allows, as he must, that any particular sentence identified only phonemically, could
be rejected; but he maintains that no system of sentential operators of a foreign language
could be translated into our own unless they were subject to the laws of classical logic. It
plainly follows that these laws are constitutive of the meanings of these logical constants
in our language.”

Nonetheless, the fact that every well-behaved logical system renders its laws analytic tells nothing
about the epistemic usefulness of that system. As a consequence, in logic it is possible to understand
a term by knowing its meaning-conferring rule without endorsing it, but only for pragmatical reasons,
not because we do not consider the rule valid tout court. In conclusion, contrary to what is claimed by
Cozzo, understanding is sufficient for the justification of the validity of logical sentences, even though
it is not sufficient for warranting the epistemic usefulness of the logical notion under investigation.

In order to reject this vision of logic, Putnam considers analytic sentences revisable only for
“unintended and unexplained historical changes in the use of language”.84 That is to say, if we change
completely the meaning of a term without any rational reason. The reason to ask for a complete
change of meaning is Putnam’s adoption of cluster concepts: a concept is usually not individuated by
a single analytic sentence, but by more sentences that are accepted as true by the community of the
speakers, so that by changing idea about one of these sentences you do not change the subject.85 So,
in order to specify that we are not looking for a change of one single property of the same subject but
for a complete change of the language, we ask for a complete redefinition of the meaning. Needless to
say, as far as we are concerned we cannot adopt the idea of cluster concepts for logical terms, since
it is blatantly in conflict with our belief that set of sentences are to be interpreted as conjunctions or
as disjunctions. Its applicability for other non-logical concepts should be evaluated carefully, but this
topic is beyond the scope of this work. The reason to ask for the absence of rational reasons for the
change is however obscure to me. Moreover, it seems to have a big role in Putnam’s conclusion that
there are no interesting analytic sentences.86 If, as we propose, it is possible to have a rational revision
of analytic sentences and a rational change of language, Putnam’s motive to restrict analyticity to
uninteresting sentences can be avoided.

The difference between our and Putnam’s approaches to analyticity is made clear by the fact that
he describes analytic sentences in formal languages as sentences for which there are extra clauses that
prevent to give them up.87 Of course he does not believe that this is what happens with natural
language, since there are very few stipulations in strict sense in natural language, and “all bachelors
are unmarried” – the prototypical example of analytic sentence – is not based on stipulations of any
kind. Nonetheless this is a good picture of what we intend with “true by stipulation” neither, at least
according to our theory of meaning. Introduction rules are intended to be meaning-conferring rules,
and so true by stipulation (at least for formal languages), nonetheless they can be rejected. Moreover
no extra clauses are imposed to determine that their are true-by-convention. What it happens is
that when we give them up, we are not speaking of the same logical terms any more. And we do
not have any choice about this issue: the identity of the logical terms is determined by the theory of

81Cozzo deals with different but equivalent examples, the impact of the discovery of platypus on the classification of
mammals and the rejection of phlogiston in contemporary chemistry: [Cozzo, 2002], p. 43.

82To be precise, I-rules are directly analytic since meaning-conferring, while E-rules are analytic since justified by
I-rules.

83[Dummett, 1978b], p. 416.
84[Putnam, 1962], p. 375.
85[Putnam, 1962], pp. 378-379.
86[Putnam, 1962], p. 362 and pp. 380-381.
87[Putnam, 1962], p. 382.
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meaning, it cannot be determined independently of that. Putnam’s conception of analytic sentences in
formal languages explains why he shares Quine’s opinion that there should be no interesting analytic
sentences in science. That is, to assume the existence of analytic sentences is a bad scientific habit.88

Of course, if what he means is that it is a bad scientific habit to assume, by extra clauses, the existence
of sentences in the theory that cannot be revised rationally, but that can be revised only by random
historical changes in the language, we share his negative opinion. In conclusion, the fate of Putnam’s
conception of analytic sentences is indissolubly tied to his cluster concept theory of meaning. Since it
clearly clashes with what we established in this thesis,89 we can reject Putnam’s vision, at least for
logical terms.

A much more controversial topic is the existence of analytic truths in the non-logical fragment
of the language. Indeed it is not clear how it could be possible to identify analytic sentences in a
natural language.90 Nonetheless, the idea that in order to revise the truth value of some sentences
in general we do not need to change the meaning of the terms involved, while in some special cases
the revision of the truth value entails such a change is at least prima facie appealing. This work is
devoted almost exclusively to the logical language, but Dummett gives good reasons to be optimistic
about the possibility of investigating such a distinction in natural language too.91

4.4.3 Criticisms

Answers to old criticisms

Let us consider the criticisms already seen for the realist version of pluralism.
First of all, in this case, we can not object that we are not proposing a real pluralism. Indeed,

the difference between logics can not be explained by a difference in contexts of application this time.
It is true that intuitionistic logic accepts the validity of classical logic in some special contexts (fi-
nite contexts, decidable context, etc.), but that there seems to be no pluralism in this phenomenon.
Nonetheless, our justification of logics is purely linguistic and does not depends on the context of
application. In addition, and more importantly, different logics speak about different logical connec-
tives, so the fact that in some particular contexts A_i iA can be proved has nothing to do with the
provability of A_c  cA in general.

Priest’s two collapse arguments can not be used against our pluralism, indeed:

• The first argument stresses that if we are entitled to use different logics, we know that the
strongest is valid (preserves truth, in the old, realist formulation) so it is useless to argue for the
validity of its sublogics. Indeed it seems to be in some way useless and in some way obvious,
since we will never use them and they are obviously valid, as sublogics of a valid logic.

This argument can not be used against our pluralism since we strongly distinguish between the
connectives of different logics. Indeed the validity of a subset of all the logical consequences
provable in a valid logic is obvious, but the validity of a reformulation of these consequences
that uses other logical terms is not obvious at all. This is not a purely abstract specification:
we impose some formal requirements for the acceptability of a logical system, like harmony and
separability, and the fact that a logic satisfies them does not entail that all its sublogics do the
same. Indeed we already proved that an intuitionistic system in which we assume quantum-
disjunction in place of standard disjunction is not harmonious but, nonetheless, it is a sublogic
of both SASCJ and SASCK, which we accept as valid logics.92 Also the argument that weaker
logics are useless can be refuted for Carnapian kinds of disagreements, as we remarked at the
end of the previous section.

• The second argument asserts that we should consider valid only the weakest logic that suits
(GTT), since the realist notion of logical consequence asks for necessary truth preservation,
interpreted as truth preservation in all cases. So the largest set of cases, that detects the
weakest logic, is the only one apt to give valid logical consequence according to realism.

In an antirealistic conception of logic we can define validity:

– As derivability in an acceptable system;

– Explicitly, in an inductive way starting from canonical derivations and then generalising,
as we did in section 1.2.2.

88[Putnam, 1962], p. 389.
89Particularly with our analysis of sets of sentences in section 2.6.
90Surely this part of Quine’s thesis in [Quine, 1951] is fully shareable and uncontroversial.
91[Dummett, 1978b], especially section 7.
92We explained the problems with this connective in section 1.2.2.
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Some authors prefer the first alternative,93 grounding all their theory on harmony and other
properties of the system, while others prefer an explicit definition of validity.94 It seems at first
glance that none of these alternatives can be used to raise Priest’s objection, but the second one is
some times reformulated as asking for propagation of grounds for assertion from assumptions to
conclusions.95 We can try to use this reformulation to adapt Priest’s objection to our antirealist
pluralism: we should consider valid only the logic that preserves grounds for assertion in every
case, that is the weakest of the justified logics.

This would be a smart move for an opponent to our pluralism but, nonetheless, we can easily
block it. Indeed, as an example let us consider double negation elimination. For the realist
pluralism devised by Beall and Restall, that were the target of Priest’s objection, what is at
issue is   φ (x φ, that is truth preservation in a set x of cases. In this case, we can argue that,
since logical consequence asks for truth preservation in every case, this consequence is valid if
and only if x contains all the cases. Indeed classical logic and intuitionistic logic evaluate the
same consequence and the first manages to prove it only because it takes into account a subset
of constructions (that are adequate to work as classical models). In our antirealist pluralism,
what is at issue is  l lφ ( φ, that is, preservation of grounds for assertions in general for
sentences formulated using the logical terms of a specific logic l. The variety of logics is given
by different sets of logical constants, so weaker logics are not more general than stronger ones,
they just speak of different terms. To argue that  c cφ ( φ is not valid because  i iφ * φ
and so grounds for assertions are not preserved in general makes no sense at all: we are making
a comparison between two completely different consequences.

Stephen Read’s observation that Priest’s argument is even more dangerous when we justify two
logics that strongly disagree – that is one proves a result and the other one proves its negation –
goes away with Priest’s argument, of course. Indeed there is nothing problematic in accepting both
 cA,B (  cpppA Ąc Bq Ąc Bq Ąc Aq for classical connectives, and  aA,B ( ppA Ąa Bq Ąa Bq Ąa A
for Abelian connectives.96 We could be in doubt which of the two consequences we should apply for
a precise purpose, but both of them preserve grounds for assertion, and so are valid. In the same
way, we can deal with Gillian Russell’s argument for logical nihilism based on Priest’s second collapse
argument.

In conclusion, we have to deal with Williamson’s arguments against change of subject, based on
the observation that we can not have both  i and  c in the same language. We rejected an identity
criterion based on this property in section 4.2.2. Nonetheless, there is still the problem of explaining
why it is not possible to have both connectives in the same language. Even though we managed to
weaken this objection by pointing out some of its undesired consequences, the issue of explaining the
impossibility of having more logical constants in the same language remains an open problem.

New criticisms

External validity The standard criticism against this view of logic is that it rejects any external
notion of logical validity.97 Indeed, even though our antirealistic perspective manages to distinguish
between formal derivability and validity in a well-defined system, we still do not have something like
validity simpliciter. To be honest, it is not completely clear to me what this extra-systematic notion
of validity should be. Priest is very clear about his ideas on this topic: validity is logical validity in
natural language, or vernacular reasoning.98 If this is the standard interpretation of external validity,
I will argue that it is not such an important notion and that our requirements grounded on the theory
of meaning give an external criterion that is much more philosophically pregnant.99

Another recent criticism of proof-theoretic validity proposed by Stephen Read can be interpreted
in this direction too.100 I will explain why this is the case, and propose an objection to Read’s criticism

93Read is surely one of them (see [Read, 2000] and [Read, 2010], inter alia), like Tennant ([Tennant, 1997]). One
of the main reasons to abandon an explicit characterization of validity is that it requires the infamous fundamental
assumption (assumption 1.2.1), that is not easy to justify.

94Like Prawitz and Dummett: [Prawitz, 1971] and [Dummett, 1991].
95[Francez, 2017a] explains very clearly this issue, although it is present in some earlier papers about proof-theoretic

semantics too.
96As there is nothing problematic in accepting both  cφ, ψ (  cpppφ Ąc ψq Ąc ψq Ąc φq and  aφ, ψ ( ppφ Ąa ψq Ąa

ψq Ąa φ for specific sentences φ and ψ.
97[Haack, 1978], p. 14-15.
98[Priest, 2016], section. 2.5.
99Williamson proposes a similar criticism about logical pluralism in general. He argues that although there is variance

in how terms are used in different logics, there is no difference in how they should be used, and only this could lead to
a change of meaning for logical terms: [Williamson, 2014], p. 224-225. Since this objection is a particular reformulation
of the one based on external validity, we will not deal with it directly.
100[Read, 2015].
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in particular and to all the objections based on external validity in general. He proposes to use both
harmony and truth preservation as requirements for justifying a logical system; harmony gives us
analyticity, that is it warrants that logical truths follow from the meaning of the logical constants,
while truth preservation assures us that the meaning given to logical terms is correct, that is it is
not flawed per se. Read’s examples of terms with a flawed meaning include: ‘Boche’, ‘phlogiston’, his
logical constant ‚ that we already encountered in section 1.2.1, and both intuitionistic and classical
conditional.101

The observation that we should reject some terms of common usage in natural language has a long
tradition that dates back at least to logical positivism. The most famous example in the community
of logicians is Tarski’s observation that we have to restrict the applicability of the truth predicate in
our natural language, if we want to avoid paradoxes. In addition, criticisms to established linguistic
practices are not unusual in proof-theoretic semantics, since most of the logicians that share this
perspective are deeply convinced that classical logic is unjustified. What is new in Read’s proposal is
that he consider proof-theoretical properties as apt only to prove the faithfulness of a set of rules to the
meaning given to terms by the introduction rules, but not as apt to prove validity. His main reasons
to believe this are his scepticism for non-relevant conditionals and his conviction that his connective
bullet is well-defined. These are in his opinion harmonious connectives that lead to unacceptable
conclusions.

We already saw that it is not hard to reject ‚, and indeed logicians seem to have rejected it en
bloc, and even though some strange terms like Peano’s operator ‘?’ can raise doubts about harmony
as a complete criterion of validity, there are no reasons to look at external validity in order to find
a solution. Read’s rejection of non-relevant conditionals too can be explained without referring to
a strong notion of external validity. Indeed, when we have a proof of a logical law in a harmonious
system and we find an alleged counterexample of it in natural language, we are just proving that
natural language does not follow the inference rules of that system. But this tells nothing about the
validity of that law in that system and tells also nothing about the validity of that law in general. It
only tells us something about the validity of this law in that natural language.102

Maybe every language gives us the same report about valid inferences, but this is relevant only for
cognitive reasons. As an example, it could just indicate that our common brain structure determines
some formal aspects of our language; something completely distinct from logical validity. According to
this reasoning, the famous problem regarding logical alien that puzzled Frege is just a fake problem: we
could have logical aliens (maybe we already have some), but nothing could force us to translate their
sentences homophonically.103 That is if they are logical aliens then they speak different languages.

About this part of logic (but only about it), I agree with philosophers that argue that logic is not
exceptional but uses the same methods of the other sciences.104 This does not mean that the problem
of the relationship between formal logic and natural reasoning is uninteresting. I think that the
reconstruction of the uprising of the distinction between de dicto and de re modalities in [Read, ming]
greatly exemplifies the attractiveness of this research. Neither it is clear whether what is happening
there is the explication of the meaning of modal terms that already the ancient Greeks possessed or a
transformation of their meaning. What is sure is that natural languages evolve and that, although we
can be competent speakers of a natural language, this competence leads to explicit knowledge only in
an imperfect way. This is the reason why we need to study the natural language from the outside,
scientifically. However, the issue of the justification of logical consequence is completely independent
of these problems.

Moreover, I think that we should really be concerned with the fact that if there is a place in which
Gillian Russell’s argument for logical nihilism works well, it is in natural language. And defining
logical validity as truth preservation without a specification of any theory of meaning prevents us
from finding a good objection to this conclusion (for example one based on the change of meaning).
As a consequence, probably the combination of Williamson’s argument against meaning variance and
Russell’s argument for logical nihilism entail that natural language does not have any logic at all.

In conclusion as far as logic is the study of the behaviour of logical terms in natural language,
logic is a science, but as I already stressed this is a very deep conclusion only if you ascribe a special
logical status to natural language, something I do not think you should do (especially if you want to

101[Read, 2015] and [Read, ming].
102One of the reasons why Read is unsatisfied with proof-theoretic validity is that he believes that Prawitz’s definition

of validity rests on an erroneous assumption, that is, the fundamental assumption. Indeed, he gives back to harmony
and truth preservation simpliciter after discarding justified assertion preservation.

His criticism of Prawitz’s account of validity could also be right, but, in this case, Read still needs to answer the
“change of logic, change of subject” argument. That is natural language counterexample and formal laws still speak
about different objects.
103[Frege, 2016], p. XVI.
104[Priest, 2016], [Russell, 2015], [Williamson, 2017] and [Hjortland, 2017] inter alia.
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avoid logical nihilism). So I think that it is preferable to keep the investigation about the validity of
logical consequences completely severed from issues about natural language.105

105Someone argues that we need an external notion of validity in order for our knowledge to be grounded. I think that
Steinberger’s defence of Carnap’s philosophy of logic against this kind of criticisms works fine also for our position.
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Appendix A

Systems

In this appendix we list the formal systems developed during the thesis.

A.1 JDJ systems

A.1.1 LJDJ

Axioms

Añ A

Structural rules

ñ C
Weak ñ

A ñ C
C ñ

ñWeak
C ñ A

C ñ A A ñ D
Cut

C ñ D

Operational rules

A ñ C
^ ñ

A^B ñ C
B ñ C

^ ñ
A^B ñ C

C ñ A C ñ B
ñ ^

C ñ A^B

A ñ C B ñ C
_ ñ

A_B ñ C

C ñ B
ñ _

C ñ A_B
C ñ A

ñ _
C ñ A_B

ñ A B ñ C
Ąñ

A Ą B ñ C
A ñ B

ñĄ
ñ A Ą B

ñ A
 ñ

 A ñ

A ñ
ñ  

ñ  A
A ñ K

ñ K
A ñ
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A.1.2 NJDJ

C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

A_B

rAs

...
C

rBs

...
C

_E
C

A
_I

A_B

B
_I

A_B

rAs

...
B

ĄI
A Ą B

A Ą B

H

...
A

rBs

...
C

ĄE
C

rAs

...
K

 I
 A

K
Efq

C
 A

H

...
A

 E
K

A.2 Intuitionistic systems

A.2.1 LJ

Axiom

Añ A

Structural Rules

Γ ñ C
Weak ñ

Γ, A ñ C
Γ ñ

ñWeak
Γ ñ A

Γ, A,A ñ C
Conñ

Γ, A ñ C

Γ, A,B,Θ ñ C
Permñ

Γ, B,A,Θ ñ C

Γ ñ A ∆, A ñ C
Cut

Γ,∆ ñ C

Operational Rules

Γ, A ñ C
^ ñ

Γ, A^B ñ C

Γ, B ñ C
^ ñ

Γ, A^B ñ C

Γ ñ A Γ ñ B
ñ ^

Γ ñ A^B

Γ, A ñ C Γ, B ñ C
_ ñ

Γ, A_B ñ C

Γ ñ B
ñ _

Γ ñ A_B
Γ ñ A

ñ _
Γ ñ A_B

Γ ñ A ∆, B ñ C
Ąñ

Γ,∆, A Ą B ñ C

Γ, A ñ B
ñĄ

Γ ñ A Ą B

Γ ñ A
 ñ

Γ, A ñ

Γ, A ñ
ñ  

Γ ñ  A
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A.2.2 SASCLJ

Axioms

Añ A

Structural rules

ñ C
Weak ñ

A ñ C
C ñ

ñWeak
C ñ A

C ñ A tG^uAt^Hu ñ D
Cut

tG^uCt^Hu ñ D

Operational rules

A ñ C
^ ñ

A^B ñ C
B ñ C

^ ñ
A^B ñ C

C ñ A C ñ B
ñ ^

C ñ A^B

At^Du ñ C Bt^Du ñ C
_ ñ

pA_Bqt^Du ñ C

C ñ B
ñ _

C ñ A_B
C ñ A

ñ _
C ñ A_B

tEu ñ A Bt^Du ñ C
Ąñ

pA Ą Bqt^pD ^ Equ ñ C

At^Cu ñ B
ñĄ

tCu ñ A Ą B

tCu ñ A
 ñ

 At^Cu ñ

At^Cu ñ
ñ  

tCu ñ  A
A ñ K

ñ K
A ñ

A.2.3 SASCNJ

C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

pA_Bqt^Du

rAt^Dus

...
C

rBt^Dus

...
C

_E
C

A
_I

A_B

B
_I

A_B

tCu

rAt^Cus

...
B

ĄI
A Ą B

A Ą Bt^pD ^ Equ

rtEus

...
A

rBt^Dus

...
C

ĄE
C

tCu

rAt^Cus

...
K

 I
 A

K
Efq

C
 At^Cu

rt Cus

...
A

 E
K
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A.3 Classical systems

A.3.1 LK

Axiom

Añ A

Structural Rules

Γ ñ ∆
Weak ñ

Γ, A ñ ∆
Γ ñ ∆

ñWeak
Γ ñ A,∆

Γ, A,A ñ ∆
Conñ

Γ, A ñ ∆

Γ ñ A,A,∆
ñ Con

Γ ñ A,∆

Γ, A,B,Θ ñ ∆
Permñ

Γ, B,A,Θ ñ ∆

Γ ñ ∆, A,B,Λ
ñ Perm

Γ ñ ∆, B,A,Λ

Γ ñ A,∆ Θ, A ñ Λ
Cut

Γ,Θ ñ ∆,Λ

Operational Rules

Γ, A ñ ∆
^ ñ

Γ, A^B ñ ∆

Γ, B ñ ∆
^ ñ

Γ, A^B ñ ∆

Γ ñ A,∆ Γ ñ B,∆
ñ ^

Γ ñ A^B,∆

Γ, A ñ ∆ Γ, B ñ ∆
_ ñ

Γ, A_B ñ ∆

Γ ñ B,∆
ñ _

Γ ñ A_B,∆

Γ ñ A,∆
ñ _

Γ ñ A_B,∆

Γ ñ A,∆ Θ, B ñ Λ
Ąñ

Γ,Θ, A Ą B ñ ∆,Λ

Γ, A ñ B,∆
ñĄ

Γ ñ A Ą B,∆

Γ ñ A,∆
 ñ

Γ, A ñ ∆

Γ, A ñ ∆
ñ  

Γ ñ  A,∆
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A.3.2 SASCLK

Axioms

Añ A

Structural rules

ñ C
Weak ñ

A ñ C
C ñ

ñWeak
C ñ A

C ñ tE_uAt_F u tG^uAt^Hu ñ D
Cut

tG^uCt^Hu ñ tE_uDt_F u

Operational rules

A ñ C
^ ñ

A^B ñ C
B ñ C

^ ñ
A^B ñ C

C ñ A C ñ B
ñ ^

C ñ A^B

At^Du ñ C Bt^Du ñ C
_ ñ

pA_Bqt^Du ñ C

C ñ B
ñ _

C ñ A_B
C ñ A

ñ _
C ñ A_B

tEu ñ At_F u Bt^Du ñ C
Ąñ

pA Ą Bqt^pD ^ Equ ñ Ct_F u

At^Cu ñ Bt_F u
ñĄ

tCu ñ pA Ą Bqt_F u

tCu ñ At_F u
 ñ

 At^Cu ñ tF u

At^Cu ñ tF u
ñ  

tCu ñ  At_F u
A ñ K

ñ K
A ñ

A.3.3 SASCNK

C

rCs

...
A

rCs

...
B

^I
A^B

A^B

rAs

...
C

^E
C

A^B

rBs

...
C

^E
C

pA_Bqt^Du

rAt^Dus

...
C

rBt^Dus

...
C

_E
C

A
_I

A_B

B
_I

A_B

tCu

rAt^Cus

...
Bt_Du

ĄI
pA Ą Bqt_Du

A Ą Bt^pD ^ Equ

rtEus

...
At_F u

rBt^Dus

...
C

ĄE
Ct_F u

tCu

rAt^Cus

...
KtBu

 I
 At_Bu

K
Efq

C
 At^Cu

rt Cus

...
At_Bu

 E
KtBu
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Appendix B

Formal Results

B.1 Equivalence between logical systems

B.1.1 JDJ systems

Equivalence between SASCLJDJ and SASCNJDJ

Theorem B.1.1 (Equivalence between SASCLJDJ and SASCNJDJ). 1. (a) If $SASCLJDJ

Añ B, then:

• Or A $SASCNJDJ B;

• Or $SASCLJDJñ B and $SASCNJDJ B.

(b) If $SASCLJDJ Añ, then A $SASCNJDJK.

2. (a) If A $SASCNJDJ B, then $SASCLJDJ Añ B.

Let us first define a translation from SASCLJDJ to SASCNJDJ.

Proof. By induction on the length of the derivation d of SASCLJDJ, we obtain the derivation d˚ of
SASCNJDJ:

Base: The only derivation of length 1 in SASCLJDJ is an application of the axiom rule A ñ A
(K ñ K), which we translate to the assumption A (K) in SASCNJDJ;

Steps: By case on the last rule applied in the SASCLJDJ derivation of Añ B (or Añ).

ñ ^ 1

d1

C ñ A

d2

C ñ B
ñ ^

C ñ A^B
ù

C

rCs1

...d˚1
A

rCs2

...d˚2
B

^I1,2
A^B

^ ñ

d

A ñ C
^ ñ

A^B ñ C
ù

A^B

rAs1

...d˚

C
^E1

A^B

2

ñ _

d

C ñ A
ñ _

C ñ A_B
ù

C
...d˚

A
_I

A_B

3

_ ñ

d1

A ñ C

d2

B ñ C
_ ñ

A_B ñ C
ù

A_B

rAs

...d˚1
C

rBs

...d˚2
C

_E
C

1Technically speaking we could also have $SASCNJDJ A and $SASCNJDJ B, but this is not a problem at all.
2Other case is symmetrical.
3Other case is symmetrical.
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ñĄ

d

A ñ B
ñĄ

ñ A Ą B
ù

rAs1

...d˚

B
ĄI1

A Ą B

4

Ąñ

d1

ñ A

d2

B ñ C
Ąñ

A Ą B ñ C
ù

A Ą B

H

...d˚1
A

rBs1

...d˚2
C

ĄE1
C

ñ  

d

A ñ
ñ  

ñ  A
ù

rAs1

...d˚

K
 I1

 A

 ñ

d

ñ A
 ñ

 A ñ

ù

 A

H

...d˚

A
 E

K

ñWeak
d

C ñ
ñWeak

C ñ A
ù

C
...d˚

K
Efq

C

Weak ñ
d

ñ A
Weak ñ

C ñ A
ù

H

...d˚

A

ñ K

d

A ñ K
ñ K

A ñ

ù

A
...d˚

K

Note that this conclusion is all we need, according to the

statement of the theorem.

Cut Since it is an admissible rule, it is not necessary to translate it (theorem 3.1.2). Nonetheless,
for completeness we expose its translation.

d1

C ñ A

d2

A ñ D
Cut

C ñ D
ù

C
...d˚1
A

...d˚2
D

It is important to note that in order to translate cut-free derivations of SASCLJDJ in derivations
of SASCNJDJ we used only E-rules with assumed major premises. A fortiori there are no major
premises of E-rules derived by I-rules in our SASCNJDJ derivations. This observation will be used
in the proof of theorem 3.1.4.

Let us now define a translation from SASCNJDJ to SASCLJDJ.

Proof. By induction on the length of the derivation d of SASCNJDJ, we define the derivation d˚ of
SASCLJDJ:

Base: To the assumption A (K) in SASCNJDJ, it corresponds the axiom A ñ A (K ñ K) of
SASCLJDJ;

Step: By case on the last rule applied in the derivation d of A $SASCNJDJ B:

^I

D
...d1

C

rCs1

...d2

A

rCs2

...d3

B
^I1,2

A^B

ù
d˚1

D ñ C

d˚2

C ñ A

d˚3

C ñ B
ñ ^

C ñ A^B
Cut

C ñ A^B

4If we have $SASCLJDJñ B and $SASCNJDJ B, there are no problems, since SASCNJDJ allows vacuous
dischargement.
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^E

C
...d

A^B
^E

A

ù

d˚

C ñ A^B
A ñ A

^ ñ
A^B ñ A

Cut
C ñ A

5

_I

C
...d
A

_I
A_B

ù

d˚

C ñ A
ñ _

C ñ A_B

6

_E

D
...d1

A_B

rAs

...d2

C

rBs

...d3

C
_E

C

ù
d˚1

D ñ A_B

d˚2

A ñ C

d˚3

B ñ C
_ ñ

A_B ñ C
Cut

D ñ C

ĄI

rAs1

...d
B

ĄI1
A Ą B

ù

d˚

A ñ B
ñĄ

ñ A Ą B

ĄE

D
...d1

A Ą B

H

...d2

A

rBs1

...d3

C
ĄE1

C

ù
d˚1

D ñ A Ą B

d˚2

ñ A

d˚3

B ñ C
Ąñ

A Ą B ñ C
Cut

D ñ C

 I

rAs1

...d
K

ĄI1
 A

ù

d˚

A ñ K
ñ K

A ñ
ñ  

ñ  A

 E

C
...d1

 A

H

...d2

A
 E

K

ù

d˚1

C ñ  A

d˚2

ñ A
 ñ

 A ñ
Cut

C ñ
ñWeak

C ñ K

Efq

A
...
K

Efq
C

ù

d˚

A ñ K
ñ K

A ñ
ñWeak

A ñ C

B.1.2 Intuitionist systems

Equivalence between SASCLJ and LJ

First of all, let us consider the proof of Associativity, Commutativity and Idempotence of conjunction
in SASCLJ.

A ñ A
^ ñ

A^B ñ A
^ ñ

pA^Bq ^ C ñ A

B ñ B
^ ñ

A^B ñ B
^ ñ

pA^Bq ^ C ñ B
C ñ C

^ ñ
pA^Bq ^ C ñ C

ñ ^
pA^Bq ^ C ñ B ^ C

ñ ^
pA^Bq ^ C ñ A^ pB ^ Cq pE ^ pA^ pB ^ Cqqq ^ F ñ D

Cut
pE ^ pA^Bq ^ Cq ^ F ñ D

A ñ A
^ ñ

A^ pB ^ Cq ñ A

B ñ B
^ ñ

B ^ C ñ B
^ ñ

A^ pB ^ Cq ñ B
ñ ^

A^ pB ^ Cq ñ A^B

C ñ C
^ ñ

B ^ C ñ C
^ ñ

A^ pB ^ Cq ñ C
ñ ^

A^ pB ^ Cq ñ pA^Bq ^ C pE ^ ppA^Bq ^ Cqq ^ F ñ D
Cut

pE ^ pA^ pB ^ Cqqq ^ F ñ D

5Other case is symmetrical.
6Other case is symmetrical.
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A ñ A A ñ A
ñ ^

A ñ A^A C ^ pA^Aq ñ D
Cut

C ^A ñ D

D ñ D
^ ñ

D ^ ppB ^Aq ^ Cq ñ pB ^Aq ^ C

A ñ A
^ ñ

B ^A ñ A
B ñ B

^ ñ
B ^A ñ A

ñ ^
B ^A ñ A^B

C ñ C
^ ñ

pB ^Aq ^ C ñ C
ñ ^

pB ^Aq ^ C ñ pA^Bq ^ C
^ ñ

D ^ ppB ^Aq ^ Cq ñ pA^Bq ^ C
ñ ^

D ^ ppB ^Aq ^ Cq ñ D ^ ppA^Bq ^ Cq D ^ ppA^Bq ^ Cq ñ E
Cut

D ^ ppB ^Aq ^ Cq ñ E

We will abbreviate them with:

pE ^ pA^ pB ^ Cqqq ^ F ñ D
pAs1 ñq˚

pE ^ pA^Bq ^ Cq ^ F ñ D

pE ^ ppA^Bq ^ Cqq ^ F ñ D
pAs2 ñq˚

pE ^ pA^ pB ^ Cqqq ^ F ñ D

C ^ pA^Aq ñ D
pIdemñq˚

C ^A ñ D

D ^ ppA^Bq ^ Cq ñ E
pCommñq˚

D ^ ppB ^Aq ^ Cq ñ E

Definition B.1.1. A SASCLJ-derivation is semi-Cut-free iff all its applications of Cut are in an
occurrence of pAsñq˚, pIdemñq˚ or pCommñq˚.

Antecedent and succedent in LJ are lists of formulae, while antecedent and succedent of SAS-
CLJ are composed by just one formula. Nonetheless in the translation we will frequently associate
a derivation in LJ with more derivations in SASCLJ, since this system is much more precise in the
representation of the logical structure of the antecedent and succedent. For this reason we will fre-
quently use SASCLJ as if it were a system of derivation for sets of formulae, with a little notational
abuse.

Theorem B.1.2 (Equivalence between LJ and SASCLJ). Sequent calculi LJ and SASCLJ are
equivalent to each other, that is:

1. If $LJ Γ ñ C, then $SASCLJ Γ^ ñ C;

2. If $SASCLJ D ñ C, then $LJ D
˝ ñ C˝.

Let us start from the translation 1 from LJ to SASCLJ.

Proof. By induction on the length of the derivation d of LJ, we define the equivalent derivation d˚ of
SASCLJ. Let us remember that, by definition of Γ^ we want to derive the end-sequent no matter how
the conjunctions in its antecedent are associated. Of course this means that by inductive hypothesis
we will have a derivation of a sequent no matter how the conjunctions in its antecedent are associated,
so the translation is not a function, but a relation. With a little notational abuse, we will write the
derivation in SASCLJ using Γ^ instead of its elements. In this way we can deal with the translation
as if it were a function.

Base: If the proof of LJ is just an application of the Axiom $LJ C ñ C, then the same conclusion
can be proved using the Axiom of SASCLJ, since tCu^ “ C.

Step: By cases on the last rule applied:

Step ñ ^:

d1

Γ ñLJ A

d2

Γ ñLJ B
ñ ^

Γ ñLJ A^B

ù

d˚1

Γ^ ñSASCLJ A

d˚2

Γ^ ñSASCLJ B
ñ ^

Γ^ ñSASCLJ A^B

In this case there is no need to apply pAsñq˚ to the end, since we do not modify the antecedent.
We already have the conclusion in all its generality by the generality of the inductive hypothesis.

Step ^ ñ:

d

Γ, A ñLJ C
^ ñ

Γ, A^B ñLJ C

ù

d˚

Γ^ ^A ñSASCLJ C
^ ñ

Γ^ ^ pA^Bq ñSASCLJ C
Eventually several pAsñq˚

pΓY tA^Buq^ ñSASCLJ C

I use Γ^ ^ A to indicate the set of all the conjunctions δ ^ A where δ P Γ^. In this way,
Γ^^Añ C is used to indicate that every sequent δ^Añ C is SASCLJ-derivable. Inductive
hypothesis allows the derivation of γ ñ C for every γ P pΓ Y tAuq^. So our top-sequent is
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justified, since Γ^ ^ A Ř pΓY tAuq^. The several applications of pAsñq˚ are eventually used
to derive all the elements of pΓY tA^Buq^. Indeed Γ^ ^ pA^Bq Ř pΓY tA^Buq^.7

Step ñ _:
d

Γ ñLJ A
ñ _

Γ ñLJ A_B
ù

d˚

Γ^ ñSASCLJ A
ñ _

Γ^ ñSASCLJ A_B

8

Step _ ñ:

d1

Γ, A ñLJ C

d2

Γ, B ñLJ C
_ ñ

Γ, A_B ñLJ C
ù

d˚1

Γ^ ^A ñSASCLJ C

d˚2

Γ^ ^B ñSASCLJ C
_ ñ

Γ^ ^ pA_Bq ñSASCLJ C
Eventually several pAsñq˚

pΓY tA_Buq^ ñSASCLJ C

As for ^ ñ, we can derive Γ^^Añ C from inductive hypothesis, even though to be precise it
would be enough to derive a more general result.

Step ñĄ:

d

Γ, A ñLJ B
ñĄ

Γ ñLJ A Ą B

ù

d˚

Γ^ ^A ñSASCLJ B
ñĄ

Γ^ ñSASCLJ A Ą B

As for ^ ñ, we can derive pΓY tAuq^ ñ B by inductive hypothesis and Γ^ ^Añ B is just a
special case of it.9

Step Ąñ:

d1

Γ ñLJ A

d2

∆, B ñLJ C
Ąñ

Γ,∆, A Ą B ñLJ C
ù

d˚1

Γ^ ñSASCLJ A

d˚2

∆^ ^B ñSASCLJ C
Ąñ

pΓ^ ^∆^q ^ pA Ą Bq ñSASCLJ C
Ev. sev. pAsñq˚

pΓY∆Y tA Ą Buq^ ñSASCLJ C

Step ñ  :

d

Γ, A ñLJ
ñ  

Γ ñLJ  A

ù

d˚

Γ^ ^A ñSASCLJ
ñ  

Γ^ ñSASCLJ  A

Step  ñ:

d

Γ ñLJ A
 ñ

Γ, A ñLJ

ù

d˚

Γ^ ñSASCLJ A
 ñ

Γ^ ^ A ñSASCLJ
Ev. sev. pAsñq˚

pΓY t Auq^ ñSASCLJ C

Step ñWeak: If the succedent of the premise is empty, we use the homologous rule of SASCLJ.
Otherwise we use ñ _ and eventually several applications of pAsñq˚.

Step Weak ñ: If the antecedent of the premise is empty, we use the homologous rule of SASCLJ.

Otherwise:

d

Γ ñLJ C
Weak ñ

Γ, A ñLJ C
ù

d˚

Γ^ ñSASCLJ C
^ ñ

Γ^ ^A ñSASCLJ C
Ev. sev. pAsñq˚

pΓY tAuq^ ñSASCLJ C

Step Conñ:

d

Γ, A,A ñLJ C
Conñ

Γ, A ñLJ C

ù

d˚

Γ^ ^ pA^Aq ñSASCLJ C
pIdemñq˚

Γ^ ^A ñSASCLJ C
Ev. sev. pAsñq˚

pΓY tAuq^ ñSASCLJ C

Step Per ñ:

d

Γ, A,B,∆ ñLJ C
Per ñ

Γ, B,A,∆ ñLJ C

ù

d˚

Γ^ ^ ppA^Bq ^∆^q ñSASCLJ C
pCommñq˚

Γ^ ^ ppB ^Aq ^∆^q ñSASCLJ C
Ev. sev. pAsñq˚

pΓY tB ^Au Y∆q^ ñSASCLJ C

7Other case is symmetrical.
8Other case is symmetrical.
9From now on, we will no more specify this point.
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Step Cut: Cut is admissible in LJ,10 so we do not need to translate it.

In the proof that all sequents provable in LJ are provable in SASCLJ we do not need any
application of Cut apart from these in pAsñq˚, pIdemñq˚ and pCommñq˚. So the semi-Cut-free
fragment of SASCLJ is enough strong to derive all intuitionistically valid sequents.

Let us now consider the part 2 of the theorem.

Proof. The proof is by induction on the length of the derivation in SASCLJ, and by cases on the
last rule applied.

Base: If the proof of SASCLJ is just an application of the Axiom $SASCLJ C ñ C (or $SASCLJ

K ñ K), then the same conclusion can be proved using the Axiom of LJ: $LJ C ñ C (or
$LJ  pE Ą Eq ñ  pE Ą Eq).

Steps ñ ^, ^ ñ, ñ _ and Weak: The rule of SASCLJ is a particular case of the homologous
rule of LJ.

Step _ ñ: The derivation of SASCLJ ends with:
A^ C ñSASCLJ D B ^ C ñSASCLJ D

_ ñ
pA_Bq ^ C ñSASCLJ D

By inductive hypothesis we have that in LJ A ^ C ñ D and B ^ C ñ D are provable, so we
obtain the conclusion:

A ñLJ A
Weak ñ

A,C ñLJ A

C ñLJ C
Weak ñ

A,C ñLJ C
ñ ^

A,C ñLJ A^ C A^ C ñLJ D
Cut

A,C ñLJ D

...

...

B ñLJ B
Weak ñ

B,C ñLJ B

C ñLJ C
Weak ñ

B,C ñLJ C
ñ ^

B,C ñLJ B ^ C B ^ C ñLJ D
Cut

B,C ñLJ D
_ ñ

pA_Bq, C ñLJ D
^ ñ

pA_Bq ^ C,C ñLJ D
^ ñ

pA_Bq ^ C, pA_Bq ^ C ñLJ D
Contñ

pA_Bq ^ C ñLJ D

11

Step ñĄ: In the non-trivial case, the derivation of SASCLJ ends with:
A^ C ñSASCLJ B

ñĄ
C ñSASCLJ A Ą B

By inductive hypothesis we have that in LJ A^C ñ B is provable, so we obtain the conclusion:12

...
A,C ñLJ A^ C A^ C ñLJ B

Cut
A,C ñLJ B

ñĄ
C ñLJ A Ą B

Step Ąñ: In the non-trivial case, the derivation of SASCLJ ends with:
E ñSASCLJ A B ^D ñSASCLJ C

Ąñ
pA Ą Bq ^ pD ^ Eq ñSASCLJ C

By inductive hypothesis we have that in LJ

E ñ A and B ^D ñ C are provable, so we obtain the conclusion:13

B ^D ñLJ C

...
B,D ñLJ C E ñLJ A

Ąñ
A Ą B,D,E ñLJ C

^ ñ and Contñ
pA Ą Bq ^ pD ^ Eq ñLJ C

10As established in [Gentzen, 1969b].
11If the curly brackets are empty, we have a trivial modification.
12We use the already established result $LJ A,B ñ A^B.
13We use the already established derivation of A,B ñ C from A^B ñ C.
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Step ñ  : In the non-trivial case, the derivation of SASCLJ ends with:
A^ C ñSASCLJ

ñ  
C ñSASCLJ  A

By inductive hypothesis we have that in LJ A^ C ñ is provable, so we obtain the conclusion:
A^ C ñLJ

...
A,C ñLJ

ñ  
C ñLJ  A

Step  ñ: In the non-trivial case, the derivation of SASCLJ ends with:
C ñSASCLJ A

 ñ
 A^ C ñSASCLJ

By inductive hypothesis we have that in LJ C ñ A is provable, so we obtain the conclusion:
C ñLJ A

 ñ
 A,C ñLJ

^ ñ and Contñ
 A^ C ñLJ

Step ñ K: The derivation of SASCLJ ends with:
A ñSASCLJ K

ñ K
A ñSASCLJ

By inductive hypothesis

we have that in LJ Añ  pE Ą Eq is provable, so we obtain the conclusion:

A ñLJ  pE Ą Eq

E ñLJ E
ñĄ

ñLJ E Ą E
 ñ

 pE Ą Eq ñLJ
Cut

A ñLJ

Step Cut: The derivation of SASCLJ ends with:
C ñSASCLJ A pG^Aq ^H ñSASCLJ D

Cut
pG^ Cq ^H ñSASCLJ D

By inductive hypothesis we have that in LJ C ñ A and pG^Aq ^H ñ D are provable, so we

obtain the conclusion:

C ñLJ A

pG^Aq ^H ñLJ D

...
pG^ Cq, H ñLJ D

...
G,C,H ñLJ D

Cut
G,A,H ñLJ D

^ ñ and Contñ
pG^Aq ^H ñLJ D

14

Equivalence between SASCLJ and SASCNJ

Theorem B.1.3 (Equivalence between SASCLJ and SASCNJ). The sequent calculus SASCLJ
and the natural deduction system SASCNJ are equivalent to each other, that is:

1. (a) if $SASCLJ Añ B, then:

• Or A $SASCNJ B;

• Or $SASCLJñ B and $SASCNJ B.

(b) If $SASCLJ Añ, then A $SASCNJK.

2. (a) If A $SASCNJ B then $SASCLJ Añ B.

Let us start from the first point.

Proof. The proof is by induction on the length of the derivation in SASCLJ, and by cases on the
last rule applied.

Base: The only derivation of just 1 step in SASCLJ is an application of the Axiom Añ A (K ñ K),
to which we associate the assumption A (K) in SASCNJ;

Steps ñ ^, ^ ñ, ñ _, ñ K, ñWeak and Weak ñ: We treat them as in the proof B.1.1.

14If there is no G or H, the proof remain valid; if there is none of them the rule is a special case of the corresponding
rule of LJ.
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Step _ ñ: From
A^ C ñ D B ^ C ñ D

_ ñ
pA_Bq ^ C ñ D

, we have A^ C $SASCNJ D e B ^

C $SASCNJ D by induction. We then conclude:
pA_Bq ^ C

rA^ Cs

...
D

rB ^ Cs

...
D

_E
D

15

Step ñĄ: From
A^ C ñ B

ñĄ
C ñ A Ą B

, we have A ^ C $SASCNJ B by induction. So, we

can conclude:

C

rA^ Cs1

...
B

ĄI1
A Ą B

Step Ąñ: From
E ñ A B ^D ñ C

Ąñ
pA Ą Bq ^ pD ^ Eq ñ C

, we have E $SASCNJ A andB^D $SASCNJ

C by induction. So, we can conclude:
pA Ą Bq ^ pD ^ Eq

rEs1

...
A

rB ^Ds2

...
C

ĄE1,2
C

Step ñ  : From
A^ C ñ

ñ  
C ñ  A

, we have A^C $SASCNJ K by induction. So, we can

conclude:

C

rA^ Cs1

...
K

 I1
 A

Step  ñ: From
C ñ A

 ñ
 A^ C ñ

, we have $SASCNJ A by induction. So, we can

conclude:

 A^ C

rCs1

...
A

 E1
K

Step Cut: From

...d1

C ñ A

...d1

pF ^Aq ^G ñ H
Cut

pF ^ Cq ^G ñ H

we obtain:

pF ^ Cq ^G

rpF ^ Cq ^Gs2
rpF ^ Cq ^Gs1

^E
F

rpF ^ Cq ^Gs1
^E

C
...d˚1
A

^I1
F ^A

rpF ^ Cq ^Gs2
^E

G
^I2

pF ^Aq ^G

...d˚2
H

The other cases of Cut are easy variations of this or identical with that of SASCLJDJ.

Let us now turn to the second part of the theorem.

Proof. The proof is by induction on the length of the derivation in SASCNJ, and by cases on the
last rule applied.

Base: To the assumption of A (K) in SASCNJ, we associate the Axiom A ñ A (K ñ K) of
SASCLJ;

Steps ^I, ^E, _I and Efq: We treat them as in the proof B.1.1.

15If there is not C, we behave as in proof B.1.1; in general we always deal in this way with derivations in which the
curly brackets in the rules are empty.
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Step _E: The derivation ends with:

E
...

pA_Bq ^ C

rA^ Cs

...
D

rB ^ Cs

...
D

_E
D

, so by in-

ductive hypothesis we have that in SASCLJ A^C ñ D, B^C ñ D and E ñ pA_Bq^C

are provable. So, we conclude: E ñ pA_Bq ^ C
A^ C ñ D B ^ C ñ D

_ ñ
pA_Bq ^ C ñ D

Cut
E ñ D

Step ĄI: The derivation ends with:

D
...
C

rA^ Cs1

...
B

ĄI1
A Ą B

, so by inductive hypothesis we

have that in SASCLJ A^ C ñ B and D ñ C are provable. So, we conclude:

D ñ C
A^ C ñ B

ñĄ
C ñ A Ą B

Cut
D ñ A Ą B

Step ĄE: The derivation ends with:

D
...

pA Ą Bq ^ pE ^ F q

rEs1

...
A

rB ^ F s2

...
C

ĄE1,2
C

, so

by inductive hypothesis we have that in SASCLJ D ñ pA Ą Bq ^ pE ^ F q, E ñ A and
B ^ F ñ C are provable. So, we conclude:

D ñ pA Ą Bq ^ pE ^ F q
E ñ A B ^ F ñ C

Ąñ
pA Ą Bq ^ pE ^ F q ñ C

Cut
D ñ C

Step  I: The derivation ends with:

D
...
C

rA^ Cs1

...
K

ĄI1
 A

, so by inductive hypothesis we

have that in SASCLJ A^ C ñ K and D ñ C are provable. So, we conclude:

D ñ C

A^ C ñ K
ñ K

A^ C ñ
ñ  

C ñ  A
Cut

D ñ  A

Step  E: The derivation ends with:

D
...

 A^ C

rCs1

...
A

 E1
K

, so by inductive hypothesis we

have that in SASCLJ D ñ  A^ C and C ñ A are provable. So, we conclude:

D ñ  A^ C
C ñ A

 ñ
 A^ C ñ

Cut
D ñ

ñWeak
D ñ K

Let us now consider the proof of Associativity, Commutativity and Idempotence of conjunction in
SASCNJ. Even though these do not correspond to primitive rules of SASCLJ, they will be very
useful in the future.

α

rαs4
rαs3

^E
E

rαs3
rαs2

^E
A

rαs2
rαs1

^E
B

rαs1
^E

C
^I1

B ^ C
^I2

A^ pB ^ Cq
^I3

E ^ pA^ pB ^ Cqq

rαs4
^E

F
^I4

β

...
D

119



β

rβs4
rβs3

^E
E

rβs3
rβs2

rβs1
^E

A

rβs1
^E

B
^I1

A^B

rβs2
^E

C
^I2

pA^Bq ^ C
^I3

E ^ ppA^Bq ^ Cq

rβs4
^E

F
^I4α

...
D

Where α “ pE ^ ppA ^ Bq ^ Cqq ^ F and β “ pE ^ pA ^ pB ^ Cqqq ^ F . We will call the first
derivation pAs1 ñq

˚˚ and the second pAs2 ñq
˚˚.

γ

rγs3
^E

C

rγs3
rγs2

rγs1
^E

A

rγs1
^E

B
^I1

A^B

rγs2
^E

D
^I2

pA^Bq ^D
^I3

δ
...
D

Where γ “ C ^ ppB^Aq ^Dq and δ “ C ^ ppA^Bq ^Dq. We call this derivation pCommñq˚˚.

A^B

rA^Bs2
^E

A

rA^Bs2
^E

B rA^Bs1 rA^Bs1
^I1

B ^B
^I2

A^ pB ^Bq

...
D

We call this derivation pIdemñq˚˚.

B.1.3 Classical systems

Equivalence between SASCLK and LK

First of all, let us consider the proof of Associativity, Commutativity and Idempotence of disjunction
in SASCLK.

A ñ pE _ ppB _ Cq _Dqq _ F

B ñ B
ñ _

B ñ B _ pC _Dq

C ñ C
ñ _

B ñ B _ pC _Dq
_ ñ

B _ C ñ B _ pC _Dq
D ñ D

ñ _
D ñ B _ pC _Dq

_ ñ
pB _ Cq _D ñ B _ pC _Dq

Cut
A ñ pE _ pB _ pC _Dqqq _ F

A ñ pE _ pB _ pC _Dqqq _ F

B ñ B
ñ _

B ñ pB _ Cq _D

C ñ C
ñ _

B ñ pB _ Cq _D
D ñ D

ñ _
D ñ pB _ Cq _D

_ ñ
C _D ñ pB _ Cq _D

_ ñ
B _ pC _Dq ñ pB _ Cq _D

Cut
A ñ pE _ ppB _ Cq _Dqq _ F

C ñ pA_Aq _D
A ñ A A ñ A

_ ñ
A_A ñ A

Cut
C ñ A_D
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E ñ D _ ppA_Bq _ Cq

D ñ D
ñ _

D ñ D _ ppB _Aq _ Cq

A ñ A
ñ _

A ñ B _A

B ñ B
ñ _

B ñ B _A
_ ñ

A_B ñ B _A
ñ _

A_B ñ pB _Aq _ C

C ñ C
ñ _

C ñ pB _Aq _ C
_ ñ

pA_Bq _ C ñ pB _Aq _ C
ñ _

pA_Bq _ C ñ D _ ppB _Aq _ Cq
_ ñ

D _ ppA_Bq _ Cq ñ D _ ppB _Aq _ Cq
Cut

E ñ D _ ppB _Aq _ Cq

We will abbreviate them with:

A ñ pE _ ppB _ Cq _Dqq _ F
pñ As1q˚

A ñ pE _ pB _ pC _Dqqq _ F

A ñ pE _ pB _ pC _Dqqq _ F
pñ As2q˚

A ñ pE _ ppB _ Cq _Dqq _ F

C ñ pA_Aq _D
pñ Idemq˚

C ñ A_D

E ñ D _ ppA_Bq _ Cq
pñ Commq˚

E ñ D _ ppB _Aq _ Cq

Let us also consider the following proof of distributivity of disjunction over conjunction:

A^B ñ A^B

C ñ C
ñ _

C ñ pA^Bq _ C
^ ñ

C ^B ñ pA^Bq _ C
_ ñ

pA_ Cq ^B ñ pA^Bq _ C
pCommñq˚

B ^ pA_ Cq ñ pA^Bq _ C

C ñ C
ñ _

C ñ pA^Bq _ C
^ ñ

A^ C ñ pA^Bq _ C

C ñ C
ñ _

C ñ pA^Bq _ C
^ ñ

C ^ C ñ pA^Bq _ C
_ ñ

pA_ Cq ^ C ñ pA^Bq _ C
pCommñq˚

C ^ pA_ Cq ñ pA^Bq _ C
_ ñ

pB _ Cq ^ pA_ Cq ñ pA^Bq _ C
pCommñq˚

pA_ Cq ^ pB _ Cq ñ pA^Bq _ C

We will then call Distri_^ the derivation:

D ñ pA_ Cq ^ pB _ Cq

...
pA_ Cq ^ pB _ Cq ñ pA^Bq _ C

Cut
D ñ pA^Bq _ C

Theorem B.1.4 (Equivalence between LK and SASCLK). Sequent calculi LK and SASCLK are
equivalent to each other, that is:

1. If $LK Γ ñ ∆, then $SASCLK Γ^ ñ ∆_;

2. If $SASCLK D ñ C, then $LK Γ˝ ñ C˝.

Let us start from translation 1 from LK to SASCLK.

Proof. By induction on the length of the derivation d of LK, we define the equivalent derivation
d˚ of SASCLK. Let us remember that, by definition of Γ^ and ∆_ we want to derive the end-
sequent no matter how the conjunctions in its antecedent and the disjunctions in its succedent are
associated. Of course this means that by inductive hypothesis we will have a derivation of a sequent
no matter how the conjunctions in its antecedent and the disjunctions in its succedent are associated,
so the translation is not a function, but a relation. With a little notational abuse, we will write the
derivation in SASCLJ using Γ^ and ∆_ instead of their elements. In this way we can deal with the
translation as if it were a function.

Base: If the proof of LK is just an application of the Axiom $LK C ñ C, then the same conclusion
can be proved using the Axiom of SASCLK, since tCu^ “ C.

Step: By cases on the last rule applied:

Step ñ ^:

d1

Γ ñLK A,∆

d2

Γ ñLK B,∆
ñ ^

Γ ñLK A^B,∆
ù

d˚1

Γ^ ñSASCLK A_∆_
d˚2

Γ^ ñSASCLK B _∆_
ñ ^

Γ^ ñSASCLK pA_∆_q ^ pB _∆_q
Distri_^

Γ^ ñSASCLK pA^Bq _∆_
pñ Asq˚

Γ^ ñSASCLK ptA^Bu Y∆q_

Step ^ ñ: Like in proof B.1.2.
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Step ñ _:

d

Γ ñLK A,∆
ñ _

Γ ñLK A_B,∆

ù

d˚

Γ^ ñSASCLK A_∆_
ñ _

Γ^ ñSASCLK pA_∆_q _B
pñ Commq˚pñ Asq˚

Γ^ ñSASCLK pA_Bq _∆_
pñ Asq˚

Γ^ ñSASCLK ptA_Bu Y∆q_
16

I use A _ ∆_ to indicate the set of all the disjunctions A _ δ where δ P ∆_. In this way,
Γ^ ñ A _ ∆_ is used to indicate that every sequent γ ñ A _ δ, where γ P Gamma^, is
SASCLJ-derivable. Inductive hypothesis allows the derivation of γ ñ η for every γ P Γ^ and
η P ptAu Y∆q_. So our top-sequent is justified, since A _Delta_ Ř ptAu Y∆q_. The several
applications of pAsñq˚ are eventually used to derive all the elements of ptA_BuY∆q_. Indeed
Γ^ ^ pA^Bq Ř ptA_Bu Y∆q_.17

Step _ ñ:

d1

Γ, A ñLK ∆

d2

Γ, B ñLK ∆
_ ñ

Γ, A_B ñLK ∆
ù

d˚1

Γ^ ^A ñSASCLK ∆_
d˚2

Γ^ ^B ñSASCLK ∆_
_ ñ

Γ^ ^ pA_Bq ñSASCLK ∆_
Eventually several pAsñq˚

pΓY tA_Buq^ ñSASCLK ∆_

We can derive Γ^ ^ A ñ ∆_ from inductive hypothesis, even though technically it would give
a more general result.

Step ñĄ:

d

Γ, A ñLK B,∆
ñĄ

Γ ñLK A Ą B,∆

ù

d˚

Γ^ ^A ñSASCLK B _∆_
ñĄ

Γ^ ñSASCLK pA Ą Bq _∆_

We can derive pΓYtAuq^ ñ ptBuY∆q_ by inductive hypothesis and Γ^^Añ B_∆_ is just
a special case of it.18

Step Ąñ:

d1

Γ ñLK A,∆

d2

Θ, B ñLK Λ
Ąñ

Γ,Θ, A Ą B ñLK ∆,Λ
ù

d˚1

Γ^ ñSASCLK A_∆_
d˚2

Θ^ ^B ñSASCLK Λ_
Ąñ

pΓ^ ^Θ^q ^ pA Ą Bq ñSASCLK ∆_ _ Λ_
Ev. sev. pAsñq˚

pΓYΘY tA Ą Buq^ ñSASCLK ∆_ _ Λ_
Ev. sev. pñ Asq˚

pΓYΘY tA Ą Buq^ ñSASCLK p∆Y Λq_

Step ñ  :

d

Γ, A ñLK ∆
ñ  

Γ ñLK  A,∆

ù

d˚

Γ^ ^A ñSASCLK ∆_
ñ  

Γ^ ñSASCLK  A_∆_
Ev. sev. pñ Asq˚

Γ^ ñSASCLK pt Au Y∆q_

Step  ñ:

d

Γ ñLK A,∆
 ñ

Γ, A ñLK ∆

ù

d˚

Γ^ ñSASCLK A_∆_
 ñ

Γ^ ^ A ñSASCLK ∆_
Ev. sev. pAsñq˚

pΓY t Auq^ ñSASCLK ∆_

Step ñWeak: If the succedent of the premise is empty, we use the homologous rule of SASCLK.

Otherwise:

d

Γ ñLK ∆
ñWeak

Γ ñLK A,∆
ù

d˚

Γ^ ñSASCLK ∆_
^ ñ

Γ^ ñSASCLK A_∆_
Ev. sev. pñ Asq˚

Γ^ ñSASCLK ptAu Y∆q_

16Other case is symmetrical.
17Other case is symmetrical.
18From now on, we will no more specify this point.
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Step Weak ñ: If the antecedent of the premise is empty, we use the homologous rule of SASCLJ.

Otherwise:

d

Γ ñLK ∆
Weak ñ

Γ, A ñLK ∆
ù

d˚

Γ^ ñSASCLK ∆_
^ ñ

Γ^ ^A ñSASCLK ∆_
Ev. sev. pAsñq˚

pΓY tAuq^ ñSASCLK ∆_

Step Conñ:

d

Γ, A,A ñLK ∆
Conñ

Γ, A ñLK ∆

ù

d˚

Γ^ ^ pA^Aq ñSASCLK ∆_
pIdemñq˚

Γ^ ^A ñSASCLK ∆_
Ev. sev. pAsñq˚

pΓY tAuq^ ñSASCLK ∆_

Step ñ Con:

d

Γ ñLK A,A,∆
ñ Con

Γ ñLK A,∆

ù

d˚

Γ^ ñSASCLK pA_Aq _∆_
pñ Idemq˚

Γ^ ñSASCLK A_∆_
Ev. sev. pñ Asq˚

pΓ ñSASCLK ptAu Y∆q_

Step Per ñ:

d

Γ, A,B,∆ ñLK Θ
Per ñ

Γ, B,A,∆ ñLK Θ

ù

d˚

Γ^ ^ ppA^Bq ^∆^q ñSASCLK Θ_
pCommñq˚

Γ^ ^ ppB ^Aq ^∆^q ñSASCLK Θ_
Ev. sev. pAsñq˚

pΓY tB ^Au Y∆q^ ñSASCLK Θ_

Step ñ Per:

d

Γ ñLK ∆, A,B,Θ
ñ Per

Γ ñLK ∆, B,A,Θ

ù

d˚

Γ^ ñSASCLK ∆_ _ ppA_Bq _Θ_q
pñ Commq˚

Γ^ ñSASCLK ∆_ _ ppB _Aq _Θ_q
Ev. sev. pñ Asq˚

Γ^ ñSASCLK p∆Y tB ^Au YΘq_

Step Cut: Since Cut is admissible in LK,19 we do not need to translate it.

In the proof that all sequents provable in LK are provable in SASCLK we do not need any
application of Cut apart from these in pAsñq˚, pIdemñq˚, pCommñq˚, pñ Asq˚, pñ Idemq˚ and
pñ Commq˚. So the semi-Cut-free fragment of SASCLK is enough strong to derive all classically
valid sequents.

Let us now consider the part 2 of the theorem.

Proof. The proof is by induction on the length of the derivation in SASCLK, and by cases on the
last rule applied.

Base: If the proof of SASCLK is just an application of the Axiom $SASCLK C ñ C (or $SASCLK

K ñ K), then the same conclusion can be proved using the Axiom of LK: $LK C ñ C (or
$LK  pE Ą Eq ñ  pE Ą Eq).

Steps ñ ^, ^ ñ , ñ _and Weak: The rule of SASCLK is a particular case of the homologous
rule of LK.

Steps _ ñ and ñ K: We proceed as in proof B.1.2.

Step ñĄ: In the non-trivial case, the derivation of SASCLK ends with:
A^ C ñSASCLK B _D

ñĄ
C ñSASCLK pA Ą Bq _D

By inductive hypothesis we have that in LK A^C ñ B _D is provable, and the already seen
proof of $LJ A,C ñ A ^ C still holds for LK. We can prove that $LK B _ D ñ B,D:

B ñ B,D D ñ B,D
_ ñ

B _D ñ B,D

So we obtain the conclusion:
...

A,C ñLK A^ C A^ C ñLK B _D
Cut

A,C ñLK B _D

B ñLK B,D D ñLK B,D
_ ñ

B _D ñLK B,D
Cut

A,C ñLK B,D
ñĄ

C ñLK A Ą B,D
ñ _

C ñLK pA Ą Bq _D, pA Ą Bq _D
ñ Cont

C ñLK pA Ą Bq _D

19As established in [Gentzen, 1969b].
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Step Ąñ: In the more interesting case, the derivation of SASCLK ends with:
E ñSASCLK A_ F B ^D ñSASCLK C

Ąñ
pA Ą Bq ^ pD ^ Eq ñSASCLK C _ F

By inductive hypothesis we have that in

LK E ñ A_ F and B ^D ñ C are provable, so we obtain the conclusion:20

B ^D ñLK C

...
B,D ñLK C

E ñLK A_ F

...
E ñLK A,F

Ąñ
A Ą B,D,E ñLK C,F

^ ñ and Contñ
pA Ą Bq ^ pD ^ Eq ñLK C,F

ñ _ and ñ Cont
pA Ą Bq ^ pD ^ Eq ñLK C _ F

Step ñ  : In the non-trivial case, the derivation of SASCLK ends with:
A^ C ñSASCLK D

ñ  
C ñSASCLK  A_D

By inductive hypothesis we have that in LK A^C ñ D is provable, so we obtain the conclusion:
A^ C ñLK D

...
A,C ñLK D

ñ  
C ñLK  A,D

ñ _ and ñ Cont
C ñLK  A_D

Step  ñ: In the non-trivial case, the derivation of SASCLK ends with:
C ñSASCLK A_D

 ñ
 A^ C ñSASCLK D

By inductive hypothesis we have that in LK C ñ A_D is provable, so we obtain the conclusion:
C ñLK A_D

...
C ñLK A,D

 ñ
 A,C ñLK D

^ ñ and Contñ
 A^ C ñLK D

Step Cut: The derivation of SASCLK ends with:
C ñSASCLK pF _Aq _G pH ^Aq ^ I ñSASCLK D

Cut
pG^ Cq ^H ñSASCLK D

By inductive hypothesis we

have that in LK C ñ pF _ Aq _ G and pG ^ Aq ^ H ñ D are provable, so we obtain the

conclusion:

C ñLK pF _Aq _G

...
C ñLK F _A,G

...
C ñLK F,A,G

pG^Aq ^H ñLK D

...
pG^ Cq, H ñLK D

...
G,C,H ñLK D

Cut
G,A,H ñLK F,D,G

^ ñ and Contñ
pG^Aq ^H ñLK F,D,G

ñ _ and ñ Cont
pG^Aq ^H ñLK pF _Dq _G

21

Equivalence between SASCLK and SASCNK

Theorem B.1.5 (Equivalence between SASCLK and SASCNK). The sequent calculus SASCLK
and the natural deduction system SASCNK are equivalent to each other, that is:

1. (a) if $SASCLK Añ B, then:

• Or A $SASCNK B;

• Or $SASCLKñ B and $SASCNK B.

(b) If $SASCLK Añ, then A $SASCNKK.

2. (a) If A $SASCNK B then $SASCLK Añ B.

20We use the already established derivations of A,B ñ C from A^B ñ C and Añ B,C from Añ B _ C.
21If there is no F or G, the proof remain valid.

124



Let us start from point 1.

Proof. The proof is by induction on the length of the derivation in SASCLK, and by cases on the
last rule applied.

Base: Obvious;

Steps ñ ^, ^ ñ, ñ _, _ ñ, ñ K, ñWeak and Weak ñ: We treat them as in the proof B.1.2.

Step ñĄ: From
A^ C ñ B _D

ñĄ
C ñ pA Ą Bq _D

, we have A ^ C $SASCNK B _ D by induction.

So, we can conclude:
C

rA^ Cs1

...
B _D

ĄI1
pA Ą Bq _D

Step Ąñ: From
E ñ A_ F B ^D ñ C

Ąñ
pA Ą Bq ^ pD ^ Eq ñ C _ F

, we have E $SASCNK A _ F and B ^

D $SASCNK C by induction. So, we can conclude:
pA Ą Bq ^ pD ^ Eq

rEs1

...
A_ F

rB ^Ds2

...
C

ĄE1,2
C _ F

Step ñ  : From
A^ C ñ D

ñ  
C ñ  A_D

, we have A^C $SASCNK D by induction. So, we can

conclude:

C

rA^ Cs1

...
D

 I1
 A_D

Step  ñ: From
C ñ A_D

 ñ
 A^ C ñ D

, we have $SASCNJ A _ D by induction. So, we can

conclude:

 A^ C

rCs1

...
A_D

 E1
D

Step Cut: From

...d1

C ñ pD _Aq _ E

...d1

pF ^Aq ^G ñ H
Cut

pF ^ Cq ^G ñ pD _Hq _ E

we obtain:

rA^ ppF ^ Cq ^Gqs4
rA^ ppF ^ Cq ^Gqs2

rA^ ppF ^ Cq ^Gqs1
^E

F

rA^ ppF ^ Cq ^Gqs1
^E

A
^I1

F ^A

rA^ ppF ^ Cq ^Gqs2
^E

G
^I2

pF ^Aq ^G

...d˚2

rpD _Aq ^ ppF ^ Cq ^Gqs5

rD ^ ppF ^ Cq ^Gqs4
^E

D
_I

pD _Hq _ E

...d˚2
H

_I
pD _Hq _ E

_E4
pD _Hq _ E

...

pF ^ Cq ^G

rpF ^ Cq ^Gs3
^E

C
...d˚1

pD _Aq _ E rpF ^ Cq ^Gs3
^I3

ppD _Aq _ Eq ^ ppF ^ Cq ^Gq

...
pD _Hq _ E

rE ^ ppF ^ Cq ^Gqs5
^E

E
_I

pD _Hq _ E
_E5

pD _Hq _ E

The other cases of Cut are easy variations of this or identical with that of SASCLJ.
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Let us now turn to part 2 of the theorem.

Proof. The proof is by induction on the length of the derivation in SASCNK, and by cases on the
last rule applied.

Base: To the assumption of A (K) in SASCNK, we associate the Axiom A ñ A (K ñ K) of
SASCLK;

Steps ^I, ^E, _I, _E and Efq: We treat them as in the proof B.1.2.

Step ĄI: The derivation ends with:

D
...
C

rA^ Cs1

...
B _ E

ĄI1
pA Ą Bq _ E

, so by inductive hypothesis we

have that in SASCLK A^ C ñ B _ E and D ñ C are provable. So, we conclude:

D ñ C
A^ C ñ B _ E

ñĄ
C ñ pA Ą Bq _ E

Cut
D ñ pA Ą Bq _ E

Step ĄE: The derivation ends with:

D
...

pA Ą Bq ^ pE ^ F q

rEs1

...
A_G

rB ^ F s2

...
C

ĄE1,2
C _G

, so

by inductive hypothesis we have that in SASCLK D ñ pA Ą Bq ^ pE ^ F q, E ñ A_G
and B ^ F ñ C are provable. So, we conclude:

D ñ pA Ą Bq ^ pE ^ F q
E ñ A_G B ^ F ñ C

Ąñ
pA Ą Bq ^ pE ^ F q ñ C _G

Cut
D ñ C _G

Step  I: The derivation ends with:

D
...
C

rA^ Cs1

...
B

ĄI1
 A_B

, so by inductive hypothesis we

have that in SASCLK A^ C ñ B and D ñ C are provable. So, we conclude:

D ñ C
A^ C ñ B

ñ  
C ñ  A_B

Cut
D ñ  A_B

The other case, in which B is absent, is already treated in the intuitionistic version of this
theorem. Remember that KtBu is B or K.

Step  E: The derivation ends with:

D
...

 A^ C

rCs1

...
A_B

 E1
B

, so by inductive hypothesis

we have that in SASCLK D ñ  A^ C and C ñ A_B are provable. So, we conclude:

D ñ  A^ C
C ñ A_B

 ñ
 A^ C ñ B

Cut
D ñ B

Let us now consider the proof of Associativity, Commutativity and Idempotence of disjunction in
SASCNK. Even though these do not correspond to primitive rules of SASCLK, they will be very
useful in the future.
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A
...d˚1
β

rE _ ppB _ Cq _Dqs4
rEs3

_I α
rpB _ Cq _Ds3

rB _ Cs2
rBs1

_I α

rCs1
_I α

_E1 α

rDs2
_I α

_E2 α
_E3α

rF s4
_Iα
_E4α

...

A
...d˚1
α

rE _ pB _ pC _Dqqs4
rEs3

_I
β

rB _ pC _Dqs3
rBs2

_I
β

rB _ Cs2
rCs1

_I
β

rDs1
_I

β
_E1

β
_E2

β
_E3

β

rF s4
_I

β
_E4

β

...

Where α “ pE _ pB _ pC _ Dqqq _ F and β “ pE _ ppB _ Cq _Dqq _ F . We will call the first
derivation pñ As1q

˚˚ and the second pñ As2q
˚˚.

E
...d˚1
γ

rCs3
_I

δ

rpA_Bq _Ds3
rA_Bs2

rAs1
_I

δ

rBs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
_E3

δ
...

Where γ “ C_ppA_Bq_Dq and δ “ C_ppB_Aq_Dq. We will call this derivation pñ Commq˚˚.

E
...d˚1

pA_Aq _B

rA_As2 rAs1 rAs1
_E1

A
_I

A_B

rBs2
_I

A_B
_E2

A_B
...

We will call this derivation pñ Idemq˚˚.
In conclusion, let us see the translation of Distri_^:

D
...d˚1

pA_ Cq ^ pB _ Cq
pñ Commq˚˚

pB _ Cq ^ pA_ Cq

rB ^ pA_ Cqs4
pñ Commq˚˚

ε
rA^Bs2

_I ε
rC ^Bs2

rCs1
_I ε

^E1 ε
_E2 ε

rC ^ pA_ Cqs4
rCs3

_I ε
^E3 ε

_E4 ε

Where ε “ pA^Bq _ C and the applications of pñ Commq˚˚ have form:

A^B

rA^Bs3 rBs1
^E1

B

rA^Bs3 rAs2
^E2

A
^I3

B ^A

We will call this derivation pDistri_^q˚˚.

B.2 Cut eliminations and normalizations

B.2.1 JDJ systems

Cut elimination for SASCNJDJ

Theorem B.2.1 (Cut elimination for SASCLJDJ). If $SASCLJDJ A ñ B, then we can prove it
without using the Cut rule. Also there is a procedure that change a valid derivation of a sequent, in a
Cut-free derivation of the same result.
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Our proof is a slightly modified version of the one from [Gentzen, 1969b]. We need some definitions
before we can start.

Definition B.2.1 (Cut degree). The degree of an application of Cut is the degree of the principal
formula in the application of the rule. The degree of a formula is inductively defined: the degree of
an atomic formula is 1; the degree of  A is 1 plus the degree of A; the degree of AbB is the sum of
the degree of A and B.

Definition B.2.2 (Cut rank). Given a derivation in SASCLJDJ and an application of the Cut rule
in it, we define:

Left rank: the largest number of consecutive sequents in the sub-derivation of the left-hand premise
of the Cut such that every sequents contains the Cut formula in the succedent.

Right rank: the largest number of consecutive sequents in the sub-derivation of the right-hand
premise of the Cut such that every sequents contains the Cut formula in the antecedent.

We define the rank of an application of Cut as the sum of its left and right ranks.

Proof. Let us consider an application of Cut such that there are no other application of this rule above
it. If we manage to eliminate it, we can eliminate every Cut. So we have to deal only with derivations
with just one occurrence of the Cut rule, as last rule.22

We prove the theorem by a primary induction on the degree and a secondary induction on the
rank of this single Cut. When the rank of the Cut is 2, we will reduce the degree of it; when the rank
is greater than 2, we will reduce the rank of it.

Base:
C ñ A A ñ D

Cut
C ñ D

We have degree 1 and rank 2. Since the Cut-formula is atomic

(degree 1) and it have been introduced in the premises of the Cut for the first time (rank 2),
it can be the principal formula of a Weakening or of an Axiom. If one of the two formulae is
the principal formula of a Weakening, then we pick its sub-derivation and use Weakening to
introduce the context of the other premise of the Cut. As an example, if we obtain A ñ D by
Weakening from ñ D, we use Weakening to obtain directly C ñ D. Otherwise, if both formulae
are principal formulae of Axiom, all the formulae in the Cut are identical: A “ B “ C. So the
conclusion of the Cut is identical to the premises and it can be eliminated.

Step, rank 2: Let us assume that
C ñ A A ñ D

Cut
C ñ D

has degree n and rank 2. If A is

introduced by Weakening or atomic, we can behave as in the base. We prove the other steps by
cases on the outermost connective in A:

^ Since rank is 2, the derivation should be:
A ñ D A ñ E

ñ ^
A ñ D ^ E

D ñ B
^ ñ

D ^ E ñ B
Cut

A ñ B
We can reduce the degree of the Cut

in this way:
A ñ D D ñ B

Cut
A ñ B

23

_ Since rank is 2, the derivation should be:
A ñ D

ñ _
A ñ D _ E

D ñ B E ñ B
_ ñ

D _ E ñ B
Cut

A ñ B

We can reduce the degree of the Cut in this way:
A ñ D D ñ B

Cut
A ñ B

24

Ą Since rank is 2, the derivation should be:
A ñ B

ñĄ
ñ A Ą B

B ñ C ñ A
Ąñ

A Ą B ñ C
Cut

ñ C

We can reduce the degree of the Cut in this way: ñ A
A ñ B B ñ C

Cut
A ñ C

Cut
ñ C

We obtain two applications of Cut, but this is not a problem, since both of them are elim-
inable by inductive hypothesis, being of lesser degree.

 Since rank is 2, the derivation should be:
A ñ

ñ  
ñ  A

ñ A
 ñ

 A ñ
Cut ñ

We can

reduce the degree of the Cut in this way: ñ A A ñ
Cut ñ

22We consider, given a derivation, the sub-derivation that ends with the first application of Cut.
23Other case is symmetrical.
24Other case is symmetrical.
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We have so proved the inductive step for Cut applications of rank 2 and arbitrary degree.

Step, rank ą 2: Let us assume that
C ñ A A ñ D

Cut
C ñ D

has degree n and rank mą2. If

A “ B “ C, the Cut is useless and it can be erased. Since Cut rank is strictly greater than
2, at least one of left and right rank has to be strictly greater than 1. Let us consider the two
complete but not mutually exclusive cases:

Right rank ą 1: The last rule applied in the sub-derivation of the right-hand premise of the
Cut must have a premise with the same antecedent of the conclusion. The only rules of
SASCLJDJ that fulfil this requirement areñ ^, ñ _, ñWeak and Cut. We can dismiss
the last alternative, since by hypothesis we are dealing with the upper occurrence of such
a rule. Let us see the other cases:25

ñ ^ The derivation is: A ñ C
C ñ D C ñ E

ñ ^
C ñ D ^ E

Cut
A ñ D ^ E

We can obtain

the same conclusion using only Cut applications with lesser rank:
A ñ C C ñ D

Cut
A ñ D

A ñ C C ñ E
Cut

A ñ E
ñ ^

A ñ D ^ E
The two Cuts obtained

have the same left-rank of the one deleted, but lesser right-rank, so the rank of the two
Cuts is m´ 1, and they can be eliminated by inductive hypothesis.

ñ _ The derivation is: A ñ C
C ñ D

ñ _
C ñ D _ E

Cut
A ñ D _ E

We can substitute this Cut

with one of rank m´ 1:
A ñ C C ñ D

Cut
A ñ D

ñ _
A ñ D _ E

26

ñWeak The derivation is: A ñ C
C ñ

ñWeak
C ñ B

Cut
A ñ B

We can substitute this

Cut with one of rank m´ 1:
A ñ C C ñ

Cut
A ñ

ñWeak
A ñ B

ñ K The derivation is: A ñ C
C ñ K

ñ K
C ñ

Cut
A ñ

We can substitute this Cut with

one of rank m´ 1:
A ñ C C ñ K

Cut
A ñ K

ñ K
A ñ

This end the proof of the inductive step for right-rank greater than 1. Let us consider now
the other possibility:

Left rank ą 1: The last rule applied in the sub-derivation of the left-hand premise of the
Cut must have a premise with the same succedent of the conclusion. The only rules of
SASCLJDJ that fulfil this requirement are ^ ñ, _ ñ, Ąñ, Weak ñ and Cut. As
before, we can dismiss the last alternative. Let us see the other cases:

^ ñ The derivation is:
E ñ C

^ ñ
D ^ E ñ C C ñ B

Cut
D ^ E ñ B

We can reduce by 1 the rank

of this Cut, in this way:
E ñ C C ñ B

Cut
E ñ B

^ ñ
D ^ E ñ B

_ ñ The derivation is:
D ñ C E ñ C

_ ñ
D _ E ñ C C ñ B

Cut
D _ E ñ B

We can substitute

this Cut with two of rank m´ 1, in this way:
D ñ C C ñ B

Cut
D ñ B

E ñ C C ñ B
Cut

E ñ B
_ ñ

D _ E ñ B

Ąñ The derivation is:
E ñ C ñ D

Ąñ
D Ą E ñ C C ñ B

Cut
D Ą E ñ B

We can substitute this

Cut with one of rank m´ 1, in this way:
E ñ C C ñ B

Cut
E ñ B ñ D

Ąñ
D Ą E ñ B

25This time the division in cases is not based on the rule that derive the Cut formula, but just on the last rule applied
in the derivation of the right premise of the Cut.

26Other case is symmetric.
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Weak ñ The derivation is:
ñ C

Weak ñ
A ñ C C ñ B

Cut
A ñ B

We can substitute this Cut

with one of rank m´ 1, in this way:
ñ C C ñ B

Cut
ñ B

Weak ñ
A ñ B

This ends our proof. We have shown by cases that: if the rank of the Cut is greater than 2, we
can reduce it to some Cuts of rank 2; if the rank of the Cut is 2, we can reduce it to some Cuts
of lesser degree. Cuts of degree 1 and rank 2 are dispensable.

Normalization for SASCLJDJ

Theorem B.2.2 (Normalization for SASCNJDJ). If A $SASCNJDJ B, then:

• Or there is a normal derivation of B from A;

• Or there is a normal closed proof of B.

Proof. Given a derivation D of A $SASCNJDJ B, since theorem 3.1.1 (clause 2), we have that
$SASCLJDJ A ñ B. We apply the Cut elimination procedure (theorem 3.1.2) and find the Cut-
free derivation Dst of the same sequent. Applying the (clause 1a of) theorem 3.1.1, we obtain the
SASCNJDJ derivation D˚ of B

• from A;

• or without open assumptions.27

Since in the translation used we only apply E-rules with non-derived major premises (and composition
is not used, since the derivation Dst is Cut-free), D˚ is normal.

B.2.2 Existence of normal form in SASCNJ

All we have to show to complete the proof of theorem 3.2.15 is that:

1. The only anormalities in a SASCNJ-derivation obtained by translating a semi-Cut-free SASCLJ-
derivation can arise from pAsñq˚˚, pCommñq˚˚ or pIdemñq˚˚;

2. We can deal with these anormality.

Let us start from the first point.

Proof. The translation in proof B.1.2 uses only non-derived major premises, so a fortiori only non-
derived major premises of E-rules. It follows that the only way to obtain anormality is by composition,
and the only rule of SASCLJ that ask for composition is Cut. We have already argued that the semi-
Cut-free fragment of SASCLJ is complete, so we have to deal only with pAsñq˚˚, pCommñq˚˚ or
pIdemñq˚˚.

These steps of derivation allow to compose deductions on the bottom, that is the bottom-formula
of pX ñq˚˚ (that is obviously derived) can be the major premise of an E-rule.28 Of course the open
assumption of pX ñq˚˚ can itself be derived by pX ñq˚˚, thanks to composition. So we have to deal
with chains of pX ñq˚˚ that derive major premises of E-rules.

The only situation in which we obtain an anormality is when the end-formula of the chain of
pX ñq˚˚ is the major premise of ^E. Indeed, each pX ñq˚˚ derive its conclusion with ^I as last
rule and applies only ^-rules. It is important also to notice that there are no anormalities in pX ñq˚˚,
and that their open assumption is always a major premise of ^I. So there are no anormalities in the
chains of pX ñq˚˚ (neither in a single pX ñq˚˚, nor in the assumption of an pX ñq˚˚ derived by
the preceding pX ñq˚˚), only its end-formula can give anormality with the next rule.

Now let us see that we can deal with these anormalities.

27To be honest, it is quite obvious that in the translation from D and Cut-elimination we do not use Weakening on
the left, and so A is present as an open assumption in D˚.

28I will use pX ñq˚˚ to indicate each of pAsñq˚˚, pCommñq˚˚ and pIdemñq˚˚.
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Proof. Let us consider the chain that derives an anormality, and in particular the last pX ñq˚˚, that
directly causes the anormality. We will remove completely the anormality or we will remove the last
pX ñq˚˚, so by induction on the length of the chain we obtain the normalization. By cases on the
last pX ñq˚˚.

pIdemñq˚˚

...pXñq˚˚

A^B

rA^Bs2
^E

A

rA^Bs2
^E

B rA^Bs1 rA^Bs1
^I1

B ^B
^I2

A^ pB ^Bq

rαs3

...
G

^E3
G

If α “ A, we remove the last pIdemñq˚˚ and reduce to:

...pXñq˚˚

A^B

rAs1

...
G

^E1
G

If α “ B ^B, we reduce to

...pXñq˚˚

A^B
^E

B rBs1 rBs1
^I1

B ^B
...
G

In this case we have an anormality for A ^ B if
...pXñq˚˚ ‰ H, and an anormality for B ^ B if

B ^ B $ G begins with ^E. This last anormality is easily treated, since the only discharged
assumption of such an E-rule could be B, and so we could reduce to

...pXñq˚˚

A^B
^E

B
...
G

So we only have the anormality generated by A ^ B, if
...pXñq˚˚ is not empty, and we have

normalized or at least reduced the length of the chain.

pAs1 ñq
˚˚

...pXñq˚˚

α

rαs4
rαs3

^E
E

rαs3
rαs2

^E
A

rαs2
rαs1

^E
B

rαs1
^E

C
^I1

B ^ C
^I2

A^ pB ^ Cq
^I3

E ^ pA^ pB ^ Cqq

rαs4
^E

F
^I4

β

...
D

rγs5

...
G

^E5
G

Where α “ pE ^ ppA^Bq ^ Cqq ^ F and β “ pE ^ pA^ pB ^ Cqqq ^ F .

If γ “ F , then we reduce the length of the chain by:

...pXñq˚˚

pE ^ ppA^Bq ^ Cqq ^ F
^E

F
...
G

If γ “ E ^ ppA^Bq ^ Cq, then we reduce the length of the chain by:
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...pXñq˚˚

α

rαs3
^E

E

rαs3
rαs2

^E
A

rαs2
rαs1

^E
B

rαs1
^E

C
^I1

B ^ C
^I2

A^ pB ^ Cq
^I3

E ^ pA^ pB ^ Cqq

...
G

If it create anormality, then E ^ pA^ pB ^ Cqq is the major premise of an ^E, let us call δ its
discharged assumption.

If δ “ E, then we reduce to

...pXñq˚˚

pE ^ ppA^Bq ^ Cqq ^ F
^E

E
...
G

If δ “ A^ pB ^ Cq, then we reduce to

...pXñq˚˚

α

rαs2
^E

A

rαs2
rαs1

^E
B

rαs1
^E

C
^I1

B ^ C
^I2

A^ pB ^ Cq

...
G

If A ^ pB ^ Cq creates anormality, then it is major premise of ^E, let us call ε its discharged
assumption.

If ε “ A, then we reduce to

...pXñq˚˚

pE ^ ppA^Bq ^ Cqq ^ F
^E

A
...
G

If ε “ B ^ C, then we reduce to

...pXñq˚˚

α

rαs1
^E

B

rαs1
^E

C
^I1

B ^ C
...
G

If B ^ C creates anormality, then it is major premise of ^E, and its discharged premise can
only be B or C. We then reduce to

...pXñq˚˚

pE ^ ppA^Bq ^ Cqq ^ F
^E

B
...
G

or

...pXñq˚˚

pE ^ ppA^Bq ^ Cqq ^ F
^E

C
...
G
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In both cases we have reduced the length of the chain of pX ñq˚˚ or eliminated the anormality
if there is no chain.

pAs2 ñq
˚˚

...pXñq˚˚

β

rβs4
rβs3

^E
E

rβs3
rβs2

rβs1
^E

A

rβs1
^E

B
^I1

A^B

rβs2
^E

C
^I2

pA^Bq ^ C
^I3

E ^ ppA^Bq ^ Cq

rβs4
^E

F
^I4α

rγs5

...
G

^E5
G

Where α “ pE ^ ppA^Bq ^ Cqq ^ F and β “ pE ^ pA^ pB ^ Cqqq ^ F .

If γ “ F , then we reduce to

...pXñq˚˚

pE ^ pA^ pB ^ Cqqq ^ F
^E

A
...
G

If γ “ E ^ ppA^Bq ^ Cq, then we reduce to

...pXñq˚˚

β

rβs3
^E

E

rβs3
rβs2

rβs1
^E

A

rβs1
^E

B
^I1

A^B

rβs2
^E

C
^I2

pA^Bq ^ C
^I3

E ^ ppA^Bq ^ Cq

...
G

If E ^ ppA^Bq ^ Cq creates anormality, then it is the major premise of E^. Let us call δ the
assumption it discharges.

If δ “ E, then we reduce to

...pXñq˚˚

pE ^ pA^ pB ^ Cqqq ^ F
^E

E
...
G

If δ “ pA^Bq ^ C, then we reduce to

...pXñq˚˚

β

rβs2
rβs1

^E
A

rβs1
^E

B
^I1

A^B

rβs2
^E

C
^I2

pA^Bq ^ C

...
G

If pA^Bq^C creates anormality, then it is the major premise of ^E. Let us call ε the assumption
it discharges.

If ε “ C, then we reduce to

...pXñq˚˚

pE ^ pA^ pB ^ Cqqq ^ F
^E

C
...
G
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If δ “ A^B, then we reduce to

...pXñq˚˚

β

rβs1
^E

A

rβs1
^E

B
^I1

A^B
...
G

If A^B creates anormality, then it is the major premise of ^E, and the assumption it discharges
can only be A or B. We then reduce to

...pXñq˚˚

pE ^ pA^ pB ^ Cqqq ^ F
^E

A
...
G

or

...pXñq˚˚

pE ^ pA^ pB ^ Cqqq ^ F
^E

B
...
G

In both cases we have reduced the length of the chain of pX ñq˚˚ or eliminated the anormality
if there is no chain.

pCommñq˚˚

...pXñq˚˚

α

rαs3
^E

C

rαs3
rαs2

rαs1
^E

A

rαs1
^E

B
^I1

A^B

rαs2
^E

D
^I2

pA^Bq ^D
^I3

β

...
D

rγs4

...
G

^E4
G

Where α “ C ^ ppB ^Aq ^Dq and β “ C ^ ppA^Bq ^Dq.

If γ “ C, then we reduce to

...pXñq˚˚

C ^ ppB ^Aq ^Dq
^E

C
...
G

If γ “ pA^Bq ^D, then we reduce to

...pXñq˚˚

α

rαs2
rαs1

^E
A

rαs1
^E

B
^I1

A^B

rαs2
^E

D
^I2

pA^Bq ^D

...
D
...
G

If pA^Bq^D creates anormality, then it is the major premise of ^E. Let us call δ the assumption
that it discharges.
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If δ “ D, then we reduce to

...pXñq˚˚

C ^ ppB ^Aq ^Dq
^E

D
...
G

If δ “ A^B, then we reduce to

...pXñq˚˚

α

rαs1
^E

A

rαs1
^E

B
^I1

A^B
...
D
...
G

If A^B creates anormality, then it is the major premise of ^E. The discharged assumption can
only be A or B. We then reduce to

...pXñq˚˚

C ^ ppB ^Aq ^Dq
^E

A
...
G

or

...pXñq˚˚

C ^ ppB ^Aq ^Dq
^E

B
...
G

In both cases we have reduced the length of the chain of pX ñq˚˚ or eliminated the anormality
if there is no chain.

This last case ends our proof.

B.2.3 Existence of normal form in SASCNK

All we have to show to complete the proof of theorem 3.3.9 is that:

1. The only anormalities in a SASCNK-derivation obtained by translating a semi-Cut-free SASCLK-
derivation can arise from pAs ñq˚˚, pComm ñq˚˚, pIdem ñq˚˚, pñ Asq˚˚, pñ Commq˚˚ or
pñ Idemq˚˚;

2. We can deal with these anormality.

Let us start from the first point. First of all let us see that:

Lemma B.2.1. pDistri_^q˚˚ does not create maximal formulae.

Proof. First of all, let us check that there are no maximal formulae inside pDistri_^q˚˚. In pDistri_^q˚˚

we have two major premises of E-rules that are derived, that correspond to the two applications of
pComm ñq˚˚. The first on the right could create a maximal formula of the kind ^I-_E-^E. How-
ever, only one of the assumptions discharged by _E is major premise of ^E, while in order to have a
maximal formula, both should be so (definition 3.3.2). The second has the same structure, and can
not create a maximal formula, because the discharged assumption on the left is major premise of ^I
and not of ^E (in the example of translation given at the end of section B.1.3, rC^pA_Cqs4 is major
premise of ^E, while rB ^ pA_ Cqs4 is major premise of ^I). So there is no maximal formula inside
pDistri_^q˚˚.

Let us now consider the possibility that pDistri_^q˚˚ creates maximal formulae by composition,
that is by the rule used to derive pA _ Cq ^ pB _ Cq as last step of d˚1 , together with the rules of
pDistri_^q˚˚. The only rule that could create a maximal formula in this way is _I (in this way we
could have a maximal formula of the kind _I-^I-_E). Nonetheless this possibility is excluded by the
form of pA_Cq^ pB_Cq itself, since the only I-rule that could derive it is ^I. So pDistri_^q˚˚ does
not create maximal formulae neither inside itself, nor by composition.
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With this lemma, we can now prove clause 1 :

Proof. The translation in proof B.1.3 uses only non-derived major premises, so a fortiori only non-
derived major premises of E-rules. It follows that the only way to obtain anormality is by composition,
and the only rule of SASCLK that ask for composition is Cut. We have already argued that the semi-
Cut-free fragment of SASCLK is complete, so we have to deal only with pAsñq˚˚, pCommñq˚˚,
pIdemñq˚˚, pñ Asq˚˚, pñ Commq˚˚ and pñ Idemq˚˚. By lemma B.2.1, we know that pñ Idemq˚˚

does not create maximal formulae, so let us consider the other cases.
Since pX ñq˚˚ give rise to chains, we have to deal with chains of pX ñq˚˚ that derive major

premises of ^E as in the intuitionistic case. We will see that also the solution for this cases is the
same as in the intuitionistic one.

Let us now consider pñ Xq˚˚.29 These steps of derivation allow to compose deductions on the
top, that is the top-formula of pñ Xq˚˚ (that is a major premise of _E) can be derived by an I-rule.
Of course the conclusion of pñ Xq˚˚ can itself be a top-formula of pñ Xq˚˚, thanks to composition.
So we have to deal with chains of pñ Xq˚˚ that eliminate conclusions of I-rules.

The only situation in which we obtain an anormality is when the top-formula of the chain of
pñ Xq˚˚ is the conclusion of _I. Indeed, each pñ Xq˚˚ derives its conclusion by _E with its open
assumption as major premise, and applies only _-rules.

It is important also to notice that there are no anormalities in pñ Xq˚˚, and that their conclusion
is always a conclusion of _E. So there are no anormalities in the chains of pñ Xq˚˚ (neither in a
single pñ Xq˚˚, nor in the conclusion of an pñ Xq˚˚ being the major premise of the next pñ Xq˚˚),
only its first formula can give anormality with the rule that derives it. So we have chains of pñ Xq˚˚

that can create a maximal formula only at the point of application at their top.

Now let us see that we can deal with these anormalities.

Proof. We can deal with maximal formulae caused by chains of pX ñq˚˚ in the same way as we did
regarding SASCNJ in preivous section B.2.2.

Let us consider a chain of pñ Xq˚˚ that derives an anormality, and in particular the first pñ Xq˚˚,
that directly causes the anormality. We will remove completely the anormality or we will remove the
first pñ Xq˚˚, so by induction on the length of the chain we obtain the normalization. By cases on
the last pñ Xq˚˚.

pñ Idemq˚˚

...
α

_I
pA_Aq _B

rA_As2 rAs1 rAs1
_E1

A
_I

A_B

rBs2
_I

A_B
_E2

A_B
...pñXq˚˚

If α “ B, we remove the last pñ Idemq˚˚ and reduce to:

...
B

_I
A_B

...pñXq˚˚

If α “ A_A, we reduce to

...
A_A rAs1 rAs1

^E1
A

_I
A_B

...pñXq˚˚

In this case we have an anormality for A _ B if
...pñXq˚˚ ‰ H, and an anormality for A _ A

if it is derived by _I. This last anormality is easily treated, since the only premise of such an
introduction discharged could be A, and so we could reduce to

29I will use pñ Xq˚˚ to indicate each of pñ Asq˚˚, pñ Commq˚˚ and pñ Idemq˚˚.
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...
A

_I
A_B

...pñXq˚˚

So we only have the anormality generated by A _ B, if
...pñXq˚˚ is not empty, and we have

normalized or at least reduced the length of the chain.

pñ As1q
˚˚ .

...
α

_I γ

rE _ ppB _ Cq _Dqs4
rEs3

_I
δ

rpB _ Cq _Ds3
rB _ Cs2

rBs1
_I

δ

rCs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
_E3

δ

rF s4
_I

δ
_E4

δ
...pñXq˚˚

Where γ “ pE _ ppB _ Cq _Dqq _ F and δ “ pE _ pB _ pC _Dqqq _ F .

If α “ F , then we reduce the length of the chain by:

...
F

_I
pE _ pB _ pC _Dqqq _ F

...pñXq˚˚

If α “ E _ ppB _ Cq _Dq, then we reduce the length of the chain by:

...
E _ ppB _ Cq _Dq

rEs3
_I

δ

rpB _ Cq _Ds3
rB _ Cs2

rBs1
_I

δ

rCs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
_E3

δ
...pñXq˚˚

If it creates anormality, then E _ ppB _ Cq _ Dq is the conclusion of an _I, let us call β its
premise.

If β “ E, then we reduce to

...
E

_I
pE _ pB _ pC _Dqqq _ F

...pñXq˚˚

If β “ pB _ Cq _D, then we reduce to

...
pB _ Cq _D

rB _ Cs2
rBs1

_I
δ

rCs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
...pñXq˚˚

If pB _ Cq _D creates anormality, then it is conclusion of _I, let us call ε its premise.

If ε “ D, then we reduce to
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...
D

_I
pE _ pB _ pC _Dqqq _ F

...pñXq˚˚

If ε “ B _ C, then we reduce to

...
B _ C

rBs1
_I

δ

rCs1
_I

δ
_E1

δ
...pñXq˚˚

If B _ C creates anormality, then it is conclusion of _I, and its premise can only be B or C.
We then reduce to

...
B

_I
pE _ pB _ pC _Dqqq _ F

...pñXq˚˚

or

...
C

_I
pE _ pB _ pC _Dqqq _ F

...pñXq˚˚

In both cases we have reduced the length of the chain of pñ Xq˚˚ or eliminated the anormality
if there is no such chain.

pñ As2q
˚˚ .

...
α

_I γ

rE _ pB _ pC _Dqqs4
rEs3

_I
δ

rB _ pC _Dqs3
rBs2

_I
δ

rC _Ds2
rCs1

_I
δ

rDs1
_I

δ
_E1

δ
_E2

δ
_E3

δ

rF s4
_I

δ
_E4

δ
...pñXq˚˚

Where γ “ pE _ pB _ pC _Dqqq _ F and δ “ pE _ ppB _ Cq _Dqq _ F .

If α “ F , then we reduce the length of the chain by:

...
F

_I
pE _ ppB _ Cq _Dqq _ F

...pñXq˚˚

If α “ E _ pB _ pC _Dqq, then we reduce the length of the chain by:

...
E _ pB _ pC _Dqq

rEs3
_I

δ

rB _ pC _Dqs3
rBs2

_I
δ

rC _Ds2
rCs1

_I
δ

rDs1
_I

δ
_E1

δ
_E2

δ
_E3

δ
...pñXq˚˚

If it creates anormality, then E _ pB _ pC _ Dqq is the conclusion of an _I, let us call β its
premise.

If β “ E, then we reduce to

...
E

_I
pE _ ppB _ Cq _Dqq _ F

...pñXq˚˚
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If β “ B _ pC _Dq, then we reduce to

...
B _ pC _Dq

rBs2
_I

δ

rC _Ds2
rCs1

_I
δ

rDs1
_I

δ
_E1

δ
_E2

δ
...pñXq˚˚

If B _ pC _Dq creates anormality, then it is conclusion of _I, let us call ε its premise.

If ε “ B, then we reduce to

...
B

_I
pE _ ppB _ Cq _Dqq _ F

...pñXq˚˚

If ε “ C _D, then we reduce to

...
C _D

rCs1
_I

δ

rDs1
_I

δ
_E1

δ
...pñXq˚˚

If C _ D creates anormality, then it is conclusion of _I, and its premise can only be C or D.
We then reduce to

...
C

_I
pE _ ppB _ Cq _Dqq _ F

...pñXq˚˚

or

...
D

_I
pE _ ppB _ Cq _Dqq _ F

...pñXq˚˚

In both cases we have reduced the length of the chain of pñ Xq˚˚ or eliminated the anormality
if there is no such chain.

pñ Commq˚˚

...
α

_I γ

rCs3
_I

δ

rpA_Bq _Ds3
rA_Bs2

rAs1
_I

δ

rBs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
_E3

δ
...pñXq˚˚

Where γ “ C _ ppA_Bq _Dq and δ “ C _ ppB _Aq _Dq.

If α “ C, then we reduce to

...
C

_I
C _ ppB _Aq _Dq

...pñXq˚˚

If α “ pA_Bq _D, then we reduce to
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...
pA_Bq _D

rA_Bs2
rAs1

_I
δ

rBs1
_I

δ
_E1

δ

rDs2
_I

δ
_E2

δ
...pñXq˚˚

If pA_Bq _D creates anormality, then it is the conclusion of _I. Let us call β its premise.

If β “ D, then we reduce to

...
D

_I
C _ ppB _Aq _Dq

...pñXq˚˚

If β “ A_B, then we reduce to

...
A_B

rAs1
_I

δ

rBs1
_I

δ
_E1

δ
...pñXq˚˚

If A_B creates anormality, then it is the conclusion of _I. Its premise can only be A or B. We
then reduce to

...
A

_I
C _ ppB _Aq _Dq

...pñXq˚˚

or

...
B

_I
C _ ppB _Aq _Dq

...pñXq˚˚

In both cases we have reduced the length of the chain of pñ Xq˚˚ or eliminated the anormality
if there is no such chain.

This last case ends our proof.

B.3 Intuitionistic and dual-intuitionistic negations

30

Craig-Lyndon interpolation theorem for classical logic says that:31

Theorem B.3.1 (Craig-Lyndon Interpolation). If Γ $K ∆ then:

• Γ $K or;

• $K ∆ or;

• There is a formula χ (interpolant) such that all its non-logical terms belong both to Γ and to ∆,
and such that Γ $K χ and χ $K ∆.

[Milne, 2017] refined this theorem showing that:

Theorem B.3.2 (Milne Interpolation). If Γ $K ∆ then:

• Γ $K3 or;

30For brevity, in this section we will use interchangeably ñ and $ since the adoption of the metalinguistic interpre-
tation of sequents; see section 2.4.1.

31[Takeuti, 1987], lemma 6.5 and theorem 6.6, with minimal changes.
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• $LP ∆ or;

• There is a formula χ (the interpolant) such that all its non-logical terms belong both to Γ and to
∆, and such that Γ $K3 χ and χ $LP ∆.

Where K3 is Kleene’s three-valued strong logic and LP is Priest’s logic of paradox. In this section,
we will prove that a similar result holds about intuitionistic and dual-intuitionistic logics, that (as we
argued in section 4.2.2) can be used to show some bad consequences of the thesis of the identity of
intuitionistic and dual-intuitionistic negations.

Milne’s proof is based on a very precise analysis of tableaux derivation for Γ $K ∆, while we
will prove our result metatheoretically, using Glivenko theorem.32 This theorem only holds for the
propositional fragment of K and I, and it can be adapted for DI only as long as we confine ourselves to
the propositional fragment, so we will refine only the propositional part of the interpolation theorem.
Since we will use different versions of Glivenko theorem, we will prove their equivalence.

Theorem B.3.3 (Glivenko). 1. A $K iff A $I ;

2. $K  A iff $I  A;

3. $K A iff $I   A.

Proof. We will show that 1 entails 2, 2 entails 3, and 3 entails 1. In this way, we obtain equivalence
between the three formulations.33

1 entails 2: Assuming $K  A, we derive   A $K , so for double negation introduction and transi-
tivity we obtain A $K . Applying 1, we obtain A $I , and so $I  A;

2 entails 3: Assuming $K A, we derive $K   A. Now we apply 2 and conclude $I   A.

3 entails 1: Assuming A $K , we derive $K  A and so, by 3, $I    A. Since    A $I  A, we
obtain $I  A and so   A $I . Introduction of double negation and transitivity give us the
result A $I .

We also need a stronger version of this theorem:34

Theorem B.3.4 (Strong Glivenko). Γ $K  A iff Γ $I  A

Proof. Let us assume Γ $K  A and use Γ^ to refer to the conjunction of all formulae in Γ. From
this we obtain $K Γ^ Ą  A and so, applying the formulation 3 of standard Glivenko theorem B.3.3,
we derive $I   pΓ

^ Ą  Aq. We can derive   pB Ą  Cq $I B Ą  C by:

C ñ C
 ñ

C, C ñ B ñ B
Ąñ

B,C,B Ą  C ñ
ñ  

B,C ñ  pB Ą  Cq
 ñ

B,C,  pB Ą  Cq ñ
ñ  

B,  pB Ą  Cq ñ  C
ñĄ

  pB Ą  Cq ñ B Ą  C

So we obtain $I Γ^ Ą  A and from this, since Modus Ponens and transitivity hold in I, we obtain
Γ $I  A.

We still need to prove equivalent results for dual-intuitionistic logic (DI), in order to be able to
prove our main theorem. Dual-intuitionistic logic can be obtained by restricting sequent calculus
system LK for classical logic to having at most one formula in the antecedent. In this way we obtain
the system displayed in table B.1. The connective ´, that have to be taken as primitive since it is not
definable in DI, is introduced in order to have theorem B.3.5, and it is sometimes called ‘subtraction’.
On the other hand, we do not need to take A Ą B as primitive in DI, since it is definable as  A_B,
and we do not need to take A´B as primitive in I, since it is definable as A^ B.35

32[Glivenko, 1929].
33We overlook the obvious direction of each formulation of the theorem.
34Chapter 3 of [Mints, 2000] and [Humberstone, 2011], p. 306. The proof presented here is based on Mint’s one.
35This is a very concise definition of this system, I refer to [Urbas, 1996] for a deeper introduction.
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Axiom

Añ A

Structural rules

ñ ∆
Weakening ñ

A ñ ∆
C ñ ∆

ñWeakening
C ñ A,∆

C ñ A,∆ A ñ Λ
Cut

C ñ ∆,Λ

Operational rules

A ñ ∆
^ ñ

A^B ñ ∆
B ñ ∆

^ ñ
A^B ñ ∆

C ñ A,∆ C ñ B,∆
ñ ^

C ñ A^B,∆

A ñ ∆ B ñ ∆
_ ñ

A_B ñ ∆

C ñ B,∆
ñ _

C ñ A_B,∆

C ñ A,∆
ñ _

C ñ A_B,∆

C ñ A,∆ B ñ Λ
ñ ´

C ñ A´B,∆,Λ

A ñ B,∆
´ñ

A´B ñ ∆

ñ A,∆
 ñ

 A ñ ∆
A ñ ∆

ñ  
ñ  A,∆

F paq ñ ∆
@ ñ

@xF pxq ñ ∆

C ñ F paq,∆
ñ @

C ñ @xF pxq,∆

F paq ñ ∆
D ñ

DxF pxq ñ ∆

C ñ F paq,∆
ñ D

C ñ DxF pxq,∆

Restriction on the variables: a must not occur in C or ∆ for R@ and LD to be applicable (that
is it must not occur in the lower sequent of the rule).
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Definition B.3.1 (Duality). Given a formula A, we define by induction its dual Ad: Ad “ A, for
A atomic; p Aqd “  Ad; pA ^ Bqd “ Ad _ Bd; pA _ Bqd “ Ad ^ Bd; pA Ą Bqd “ Bd ´ Ad;
pA´Bqd “ Bd Ą Ad.

Theorem B.3.5 (Duality). Given the previous definition B.3.1, we have:

1. Γ $I C iff Cd $DI Γd;36

2. Γ $K ∆ iff ∆d $K Γd.

Proof. Technically speaking, result 2 is absent in [Urbas, 1996], but it can be easily derived by the
first one. From Γ $K ∆, we derive Γ $K   ∆_ (defined in the obvious way), and so for strong
Glivenko theorem we have Γ $I   ∆_. By 1, we obtain p  ∆_qd $DI Γd. From this, by definition
of duality, we first obtain   p∆_qd $DI Γd, and then   p∆dq^ $DI Γd. Now, since DI is a sublogic
of K, we have   p∆dq^ $K Γd, and since elimination of double negation holds in K and multiple
antecedent is equivalent to conjunction, we have ∆d $K Γd.

As we already stated, we need connective ´ only to have theorem B.3.5. Indeed, this connective
will not occur in the DI derivations that we will consider for our strengthening of Craig-Lyndon
theorem. In order to show this, we will use:

Theorem B.3.6 (Conservative extension). DI is a conservative extension of its ´-free fragment.37

Theorem B.3.7 (Dual-Glivenko). $K A iff $DI A.38

While there is no residuation property in DI, there is something similar:

Theorem B.3.8 (Dual-residuation). A $DI B,∆ iff A´B $DI ∆.39

In order to prove our refinement of Craig-Lyndon interpolation theorem, we still need the strong
version of dual-Glivenko theorem:

Theorem B.3.9 (Strong dual-Glivenko).  A $K ∆ iff  A $DI ∆.

Proof. From  A $K ∆ we obtain ∆d $K p Aqd by clause 2 of theorem B.3.5. Now, by defi-
nition B.3.1 of duality we obtain ∆d $K  pAdq, so that we can apply theorem B.3.4 and derive
∆d $I  pA

dq. By definition of duality, we return to the formulation ∆d $I p Aq
d and then apply

clause 1 of theorem B.3.5. In this way, we obtain p Aqdd $DI ∆dd. We can prove by induction on
the complexity of the dualized formula that duality is involutive (i.e. Add “ A), so we conclude that
 A $DI ∆.40

Now we can prove our main result:

Theorem B.3.10 (I and DI Interpolation). If Γ $K ∆ then:

• Γ $I or;

• $DI ∆ or;

• There is a formula χ (interpolant) such that all its non-logical terms belong both to Γ and to ∆,
and such that Γ $I χ and χ $DI ∆.

Proof. Given Γ $K ∆, we know by theorem B.3.1 that one of the following must hold:

• Γ $K , and so by formulation 1 of theorem B.3.3 we have Γ $I ;

• $K ∆, and so by theorem B.3.7 we have $DI ∆;

• There is a classical interpolant φ for Γ $K ∆, such that all its non-logical terms belong both
to Γ and to ∆, and such that Γ $K φ and φ $K ∆. In this case, let us notice that if φ is a
classical interpolant, so is   φ, since the condition about non-logical terms still applies, and
both double negation introduction and double negation elimination hold in K. So we obtain
Γ $K   φ and   φ $K ∆, with   φ intrepolant. From Γ $K   φ we obtain Γ $I   φ
by strong Glivenko theorem B.3.4, and from   φ $K ∆ we obtain   φ $DI ∆ by strong
dual-Glivenko theorem B.3.9. So we just impose χ “   φ and we can obtain our interpolant
from a standard classical one.

36Theorem 3.1 of [Urbas, 1996].
37Corollary 4.5 of [Urbas, 1996].
38Theorem 2.1 of [Urbas, 1996].
39Theorem 5.5 of [Urbas, 1996].
40For atoms and negated formulae it is obvious, for the other cases, an example is sufficient: pA^Bqdd “ pAd_Bdqd “

Add ^Bdd, and from this we obtain Add ^Bdd “ A^B by inductive hypothesis.
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Let us notice that, since we did not assume ´ in K, it occurs neither in ∆, nor in χ (if present). It
follows from this observation and from theorem B.3.6 that there is a ´-free version of the derivation
given by previous theorem B.3.10 of $DI ∆ or of χ $DI ∆.41

It is possible to generalize the last theorem by joining it with Milne’s one:

Theorem B.3.11 (I, DI, K3 and LP Interpolation). If Γ $K ∆ then:

• Γ $I and Γ $K3, or;

• $DI ∆ and $LP ∆, or;

• There are some formulae χ, φ, ψ and ζ (interpolants) such that all their non-logical terms belong
both to Γ and to ∆, and such that:

– Γ $K3 χ and χ $LP ∆;

– Γ $I φ and φ $DI ∆;

– Γ $K3 ψ and ψ $DI ∆;

– Γ $I ζ and ζ $LP ∆.

Proof. All we have to prove are the two last clauses. To do this, we assume φ “ ψ “ ζ “   χ, so that
we already have ψ $DI ∆ and Γ $I ζ. We can easily prove Γ $K3 ψ from Γ $K3 χ and χ $K3   χ.
Double negation introduction holds in K3, since if a formula has value 1, then its double negation
has value 1. In the same way, we prove ζ $LP ∆ from χ $LP ∆ and   χ $LP χ. Double negation
elimination holds in LP, since if   A has value 1 then A has value 1, and if   A has value 1/2 then
A has value 1/2.

41We could obviously find a symmetric result, if we decide to assume ´ and not Ą in K.
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Boričić, B. (1985). On sequence-conclusion natural deduction systems. Journal of Philosophical Logic,
(14):359–377.

Brandom, R. (2000). Articulating Reasons: an Introduction to Inferentialism. Harvard University
Press, Cambridge (Massachussets), London.

Carnap, R. (1937). The Logical Syntax of Language. Routledge e Kegan Paul, Londra.

Ceragioli, L. (2019). Peano’s counterexample to harmony. Theoria, 85:459–484.

Coffa, J. A. (1991). The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge
University Press, Cambridge, New York, Oakleigh.

Cook, R. T. (2005). What’s wrong with tonk(?). Journal of Philosophical Logic, 34:217–226.

Cozzo, C. (1994a). Are Dummett’s requirements on a theory of meaning sufficient for rejecting classical
logic? Erkenntnis, 40:243–263.

Cozzo, C. (1994b). Teoria del significato e filosofia della logica. Clueb, Bologna.

Cozzo, C. (2002). Does epistemological holism lead to meaning holism? Topoi, 21:25–45.

Cozzo, C. (2008a). Epistemic truth and excluded middle. Theoria, 64:243–282.

Cozzo, C. (2008b). On the copernican turn in semantics. Theoria, 74:295–317.

Cozzo, C. (2019). Cogency and context. Topoi, 38:505–516.

Davidson, D. (1969). True to the facts. The Journal of Philosophy, 66(21):748–764.

Dicher, B. (2016). Weak disharmony: Some lessons for proof-theoretic semantics. The Review of
Symbolic Logic, 9(3).

Dummett, M. (1978a). The philosophical basis of intuitionistic logic. In Truth and other enigmas,
pages 215–247. Duckworth, London.

Dummett, M. (1978b). The significance of Quine’s indeterminacy thesis. In Truth and other enigmas,
pages 375–419. Duckworth, London.

Dummett, M. (1991). The Logical Basis of Metaphysics. Harvard University Press, Cambridge (Mas-
sachussets).

Dummett, M. (2000). Elements of Intuitionism. Claredon Press, Oxford.

145



Dunn, J. M. and Restall, G. (2002). Relevance logic. In Gabbay, D. and Guenther, F., editors, The
Handbook of Philosophical Logic, volume 6, pages 1–136. Kluwer, Dordrecht, seconda edition.

Ferreira (2008). The co-ordination principles: A problem for bilateralism. Mind, 117:1051–1057.

Francez, N. (2013). Bilateralism in proof-theoretic semantics. Journal of Philosophical Logic, 43:239–
259.

Francez, N. (2015). Proof-Theoretic Semantics. College Publications, London.

Francez, N. (2017a). On distinguishing proof-theoretic consequence from derivability. Logicque &
Analyse, 238:151–166.

Francez, N. (2017b). On harmony and permuting conversions. Journal of Applied Logic, 21:14–23.

Francez, N. (Forthcoming). Bilateralism does provide a proof theoretic treatment of classical logic
(for non-technical reasons). Journal of Applied Logic.

Francez, N. and Ben-Avi, G. (2011). Proof-theoretic semantic values for logical operators. The Review
of Symbolic Logic, 4:466–478.

Frege, G. (2016). Basic Laws of Arithmetic. Derived Using Concept-Script. Volumes I and II. Oxford
University Press, Oxford. Translated and edited by Philip A Ebert and Marcus Rossberg with
Crispin Wright.

Gabbay, M. (2017). Bilateralism does not provide a proof theoretic treatment of classical logic (for
technical reasons). Journal of Applied Logic, 25:S108–S122.

Gentzen (1969a). The consistency of elementary number theory. In Szambo, M. E., editor, The Col-
lected Papers of Gerhard Gentzen, pages 132–213. North-Holland Publishing Company, Amsterdam,
London.

Gentzen (1969b). Investigation into logical deduction. In Szambo, M. E., editor, The Collected Papers
of Gerhard Gentzen, pages 68–131. North-Holland Publishing Company, Amsterdam, London.

Gentzen (1969c). On the relation between intuitionist and classical arithmetic. In Szambo, M. E.,
editor, The Collected Papers of Gerhard Gentzen, pages 53–67. North-Holland Publishing Company,
Amsterdam, London.

Gibbard (2002). Price and rumfitt on rejective negation and classical logic. Mind, 111:297–303.

Glivenko, V. I. (1929). Sur quelques points de la logique de m. brouwer. Academie Royale de Belgique,
Bulletins de La classe des sciences, 15:183–188.
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